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matrix with nonnegative integer entries satisfying the row and column sup,
conditions if and only if

Fitrttr=s1+s2+ -+ s,

2.7.3. Ryser’s proof->

Let m and n be given positive integers, (11, 12, ..., Iy ) be a given row sum
vector, r* be a length-n conjugate of r. and (a;;) be the m x n Ferrers matrix
defined by

1 if j<r,
dij = .
0  otherwise.
Show that if (s, 52.....8,) < ", then one can rearrange the 15 in (aj;) into a

matrix with row sums r and column sums s by interchanges of the form

1 ... 0 0 ... 1

0 ... 1 ... 0

Show the more general result: let A and B be two (0-1)-matrices with row sums
r and column sums s. Then A can be transformed into B by interchanges.

2.7.4. A submodular function proof.
Define the excess function n{ A) by the formula

k
nA) =R = | Y (Al —di)*

i=l

(a) Show that 5 is submodular.
{b) Prove Higgins’ theorem by induction, using the proof of the matroid
marriage theorem as a guide.

2.7.5. (Research problem) Find an analog of the Gale—Ryser theorem for sym-
metric (0-1)-matrices.

2.7.6. (Research problem) An extension of Birkhoff's theorem.

Let (ry.ra. ... . ry) and (s1. $2. ..., s,) be vectors with nonnegative integer
entries. The set Matrix(r. s) of all m x n matrices with real nonnegative entries
with row sums r and column sums s is convex. Determine the extreme points
of Matrix(r. s).

R Ryser (1957).
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2.8 Matching Theory in Higher Dimensions

wThe possibility of extending the marriage theorem to several dimensions does
not seem to have been explored. Thinking rather crudely, one might replace a
matrix by a tensor.” In this section, we explain this remark, made by Harper
and Rota in Matching theory (p. 211).

We begin with some informal tensor algebra. Let Vi, V5, ..., V, be vector
spaces of dimension dy, ds, ..., di over a field F. A decomposable k-tensor in
the tensor product Vi, @ V, ® - - - @ V. is a formal product v @ v, ® - - - ® ;.
where the ith vector v; is in Vi. A k-tensor is a linear combination of
decomposable k-tensors. Tensors are multilinear; that is, they satisfy the

wnowonv\

c_®...®A>c‘+t~:v®...®§:
=MV Q- QU - Quy)
+~§A~:®...®:~.®...®civ

and all relations implied by this property.

A covector or dual vector of V is alinear functional or a linear transformation
V — F. The covectors form the vector space V* dualto V. Let e, es, ..., ey
be a chosen basis for V. Then e}, €3, .. ., €] is the basis for the dual V" defined
byel(e;) =0ifi # jand 1 if i = j; in other words, e’(e;) = dj;.

Consider the tensor product F” @ (IF")*. The tensor ¢; ® mw defines a linear
transformation " — F™ by u &ASS. The matrix of this linear transfor-
mation has i j-entry equal to 1 and all other entries equal to 0. Hence, the matrix
(a;j) can be regarded as the tensor

1 b

MUMU a;j€; ® Nv\w

i=l j=I

Oosoam:NEm this, and choosing bases for V;. we can think of a k-tensor as a
k-dimensional array of numbers from F.

2.8.1. Lemma. The rank of a matrix A equals

8
min{s: A = M v @ulp.

i=l

the minimum number of decomposable 2-tensors in an expression of A as a
Sum of decomposable 2-tensors.
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Proof. Suppose Y '_, v; ® u;. Then the image of A is spanned by the VeCtorg
Vi, V3. ..., Uy. Hence, the rank of A, which equals the dimension of the _5&%
of A, is at most s.

Let A be an m x n matrix of rank p. Let r. r2,.... 7, be p linearly ingq.
pendent rows in A, and

o
ri = MUNN..\\\.“ for bl_l_ MN =m.
=

Then A can be written as a sum

m m
e + M bpe, )| @rf + | ea+ M biaen | @3

h=p+1 h=p+1
m

+ot e+ D e ) ®r;

h=p+1

of s decomposable tensors. Hence, p > s. 0

An example might make the second part of the proof clearer. Consider the
matrix

Then

ri(xy, X2, X3, %) = x2 + 2x3 + 3x4  and
ry o (xy, X0 x3. x) = 2x + 3xp 4 x3 + Sxy,

and the matrix can be written as the sum of two decomposable tensors by the
following computation:

e +e®ri+es®(=2r +3r) =(e) —2e3) Q¥ +(er + ey @17

Motivated by Lemma 2.8.1, we define the rank of a tensor as the minimuim
number of decomposable tensors in an expression of A as a sum of decompos-
able tensors.” In the case of matrices. the rank can be calculated (efficiently)
by triangulation or Gaussian elimination. There is no known analogous algo-
rithm for tensors. For matrices, there is also the determinant, which determines
whether a square matrix has full rank. There is no invariant for tensors which
is as explicit or useful as the determinant for matrices. To oversimplify, oné

35 This is the commonly accepted definition of the rank of a tensor for algebraists.
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:iBmQ aims of “classical invariant theory” is to find concepts analogous
Ol

to agmﬁ—mﬁ
pere iS 1O develop an elegant (and hence useful) theory. Whatever this theory

is, it should contain a higher-dimensional matching theory as a special case.
Lot AC{L2 . diy x (1.2 doh x - x {12, dy). The free
supported by A is the k-tensor

jons and determinants for general tensors.™® The research problem

RRMQ\

M Xiyiy.in€, @€, & - Qe

inF4 ® F% @ - -- ® F%, where F is a sufficiently large field so that the nonzero
entries Xi, ;... are algebraically independent over some given subfield of
F. The problem of higher-dimensional matching theory is to define, for a
given free tensor, a combinatorial object whose “‘size” equals its rank. Such
a definition should indicate the right explicit definition for the determinant
of a tensor. Optimistically, one would also hope for an analog of the Konig—
Egervary theorem, where the rank equals the minimum over some “cover” of
A.

Related to this problem is the question of higher-dimensional submodular
inequalities (see Section 2.4). We will need to assume knowledge of matroid
theory. A main axiom of matroid theory is the submodular inequality for the
rank function rk:

rk(A) + rk(B) > rk(A U B) + k(A N B).

This inequality is satisfied by the rank function of vectors, that is, 1-tensors.
With an easy argument (see Exercise 2.8.1), this inequality can be adapted to
matrices or 2-tensors. If M|[T|S] is a matrix, let M|B|A] be the submatrix
obtained by restricting M to the rows B and columns A and rank(B, A) be the
rank of the submatrix M[B|A]. Then

rank(B. A) + rank(D. C) > rank(B U D, AN C) + rank(BN D, A U C).

This inequality is the bimarroid submodular inequality” It compares ranks
of rectangular sets of the form B x A. There is no known analog of the
.wccBom:_mq inequality for higher-dimensional tensors. Indeed. no *‘new” rank
:.zwa:m_:v\ for higher tensors is known. This would be a step toward a higher-
dimensional matroid theory.

56
57 See Grosshans (2003) and Rota (2002); for a mainstream account. see Gelfand et al, (1994,
Kung (1978) and Schrijver (1979).
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Exercises

2.8.1. (a) Prove the bimatroid submodular inequality.

(b) (Research problem) The bimatroid inequality involves “rectangular” setg
of the form B x A. Are there rank inequalities involving arbitrary subsets of
T x S for free matrices?

2.8.2. Rank inequalities for vectors.™
(a) Prove that the rank function rk of vectors satisfies Ingleton’s inequality:
for four subsets X, X», X3, and X, of vectors,

k(X 1) + rk(X2) + rk(X) U X5 U X3) + k(X U Xo U Xag) + k(X3 U Xy)
< 1k(X; U X5) + rk(X; U X3) + k(X U X4) +1k(X> U X3)
1+.1AAXN CXAV.

Show that this inequality does not follow from the submodular inequality.

(b) (Research problem posed by A. W. Ingleton) Find other inequalities for
rank functions of vectors.

(c) (Research problem) “Describe” all the inequalities satisfied by rank
functions of vectors. (It is known that the set of forbidden minors for repre-
sentability over the real or complex numbers is infinite. However, this does not
preclude a reasonable description of all rank inequalities. For example, are all
rank equalities for vectors consequences of Grassmann'’s equality?)

2.8.3. Rank inequality for matrices.
There are many matrix rank inequalities involving products of matrices. The
simplest is

rank(A B) < min{rank(A), rank(B)}.
Another is the Frobenius rank inequality
rank(A B) + rank(BC) < rank(B) + rank(ABC).

Develop a theory of matrix rank inequalities. For example. are they all conse-
quences of a finite set of inequalities?

2.8.4. Higher-dimensional permanents.™

Let A be an 1y x ny x --- x ny array of numbers with entries «;, ...,

Then a reasonable definition of the permanent per A is

nj

Uwﬂxw - M :S.,Sﬂl.au:,.:.:q,\,:.7

i=1

S ngleton (1971). ™ Dow and Gibson (1987) and Muir and Metzler (1933, chapter 1).
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where the sum ranges over all d-tuples (o1, 02, .. .. 0y) of one-to-one func-

tions 0i {t.2....,n} = {1.2.....n;}. Extend as many of the propertics
of two-dimensional permanents as possible. In particular, prove an analog of

Exercise 2.6.16(a).

2.9 Further Reading

There are probably as many approaches to matching theory as there are ar-
eas of mathematics. The survey paper Matching theory shows some of these
connections. Approaches we have completely ignored are those of graph the-
ory, combinatorial optimization, polyhedral combinatorics, probabilistic and
asymptotic combinatorics, and analysis of algorithms. For further reading, we
recommend the following books or survey papers:

R. Brualdi and H.J. Ryser, Combinatorial Matrix Theory. Cambridge University Press,
Cambridge, 1991.

R. Brualdi and B.L. Shader, Matrices of Sign-Solvable Linear Systems. Cambridge
University Press, Cambridge. 1995.

G.H. Hardy, J.E. Littlewood, and G. Pélya. Inequalities, 2nd edition, Cambridge Uni-
versity Press, Cambridge, 1952.

L. Lovész and M.D. Plummer, Matching Theory, North-Holland. Amsterdam and New
York, 1986.

A.W. Marshall and 1. Olkins, Inequalities: Theory of Majorization and Its Applications,
Academic Press, New York and London, 1979.

H. Minc, Permanents, Addison-Wesley, Reading. MA, 1978.

H. Minc, Nonnegative Matrices, Wiley. New York, 1988.

L. Mirsky, Results and problems in the theory of doubly-stochastic matrices,
Z. Wahrscheinlichkeittheor. Verwandre Geb. 1 (1962-1963) 319-334.

L. Mirsky, Transversal Theory, Academic Press, New York, 1971.



