MARTI ELECTRONICS P. O. Box 661
 Cleburne, Texas 76031
 645-4091
 (Area 817)

INSTRUCTION MANUAL RECEIVER

Model MR-30/150-170

SPECIFICATIONS

Application Remote Pick-up
Sensitivity 0.6 microvolts or less for 20 db quieting.
Frequency Range..... 150-172 megacycles.
Selectivity Minus 100 db at plus or minus 32 kc ; minus 6 db or less at plus or minus 15 kc .
Spurious Response... All spurious and image responses attenuated at least 100 db .
Overall Response... Plus or minus $2 \mathrm{db}, 60$ to 7500 cycles with matching tr ansmitter.
Frequency Stability. Plus or minus 0.0005% with crystal oven.
Temperature Range. Minus 40 degree Centigrade to plus 70 degree Centigrade.
Audio Output....... Plus 8 VU at 600 ohms.
Metering. Signal strength and VU brought out to test Jacks. Visual metering optional.
Tube Complement... 15 required. 8 tube types. 6DS4 - 1st RF A.mp. (Nuvistor) 6BH6 - 1st Limiter 6DS4 - 2nd RF A.mp. (Nuvistor) - 6BH6 - 2nd Limiter 6DS4 - lst Mixer (Nuvistor) 6AL5 - Discriminator 6HS6 - 1st IF Amp. 12AT7- Noise Rect. \& 6DS4 - HF Osc. Trip. (Nuvistor) Relay Amp. 12AT7 - 2nd Mixer \& LF Osc. 12AX7 - Noise Amp. 6HS6 - 2nd IF Amp. 6CG7 - Audio Amp. 6HS6 - 3rd IF Amp. OB2 - Voltage Reg.
Dimensions......... $10-1 / 2^{\prime \prime}$ high, 19" wide; $9^{\prime \prime}$ deep. Panel Finish -WEhammertone grey.
Weight (net)......... 20 pounds.
NOTE: Extended frequency response to 12,000 cycles available upon special order for $\$ 25.00$ additional.

Connect terminals 1 and $\underline{3}$ to the remote input of your Console.
Connect terminal $\underline{2}$ to a good ground.
Terminals $\underline{4}$ and $\underline{5}$ are used only on two frequency models.
Terminals 6 and 7 may be used to operate another relay on a signal lamp. These terminals are connected to the contacts of $\mathrm{K}-1$ and are closed when a signal is received.

Connect the antenna to the coaxial connector marked "antenna." The input connector is a SO-239 and mates with a PL-259.

The received should be installed in a standard $19^{\prime \prime}$ rack that is adequately ventilated for best operation and tube life.

Connect the Power Cord to a 117-123 Volt 50-60 cycle source.

Page 2
 MARTI ELECTRONICS Cleburne, Texas

MR-30/150-170 RECEIVER

Instruction Book

The MR-30/150-170 VHF Receiver is a crystal controlled dual conversion superheterodyne receiver designed for operation in the $150-172$ megacycle band. Each receiver incorporates 4 nuvistors, 10 tubes, and an OB2 voltage regulator. The MR-30/150-170 Receiver has a pass band of plus or minus 15 Kcs and will reject all signals plus or minus 32 Kcs . by at least minus 100 db . The receiver features two nuvistor RF stages, a lst mixer, a lst IF amplifier, a 2nd mixer, two 2nd IF stages, two limiters, a dual diode discriminator, an audio amplifier, and a two tube squelch system. The squelch system operates a sensitive relay for squelching the audio and also provides auxiliary contacts for visual signaling of a received signal.

CIRCUIT OPERATION - General

RF Amplifiers: The carrier signals received at the antenna are coupled through a 52 ohm coaxial transmission line to the Antenna Input of the MR - 30/150-170 Receiver. This Antenna Input is fed to the cathode of the lst RF Amplifier V-l, a 6DS4 Nuvistor, operating as a grounded grid amplifier. The first RF Amplifier provides some amplification but primarily it provides an impedance matching device and associated with L-1, L-2, and L-3 provides a band pass filter system. The output of V-1 is capacitive coupled to V-2, a 6 DS 4 Nuvistor, via the band pass filter $\mathrm{L}-\mathrm{l}, \mathrm{L}-2$, and $\mathrm{L}-3 . \mathrm{L}-3$ is capacitive coupled at a low-impedance point and this signal is fed to the cathode of V-2 operating as a grounded grid amplifier. The output of V-2 is fed to the mixer V-3 through a second band pass filter consisting of $\mathrm{L}-4, \mathrm{~L}-5$, and associated capacitors.

HF Oscillator and Tripler: The HF (high Frequency) oscillator V-4, a 6DS4 Nuvistor, is a crystal-controlled triode oscillator utilizing the cathode and the grid of the 6DS4 (V-4) as an oscillator and the plate load being tuned to the third harmonic of the crystal oscillator frequency. The control crystal frequency is between 45.6666 Mcs and 55.6666 Mcs . depending upon the exact carrier frequency assigned to the receiver. L-5 and L-6 and associated capacitors provide a band pass filter in the plate of V-4 and are coupled to the lst mixer V-3 with a small capacitance.

First Mixer: The output of the 2nd RF amplifier is capacitive coupled to the grid of the lst mixer ($V-3$) a 6DS4, as well as to the output of the HF oscillator V-4. Heterodyning occurs within the first mixer and the difference between the carrier frequency and the HF oscillator output frequency is used as the first mixer output. The lst IF frequency is 7.0 mcs .

Crystal and Carrier Frequency Determination: When the exact carrier frequency assigned to the receiver is known, the high-frequency oscillator carrier frequency can be calculated as follows:

$$
\mathrm{f}_{\mathrm{l}}=\mathrm{f}_{\mathrm{c}} \quad-7.0 \mathrm{mc}
$$

3

$$
\text { where: } \begin{aligned}
f_{l} & =\text { crystal frequency } \\
f_{c} & =\text { carrier frequency }
\end{aligned}
$$

$$
\begin{aligned}
7.0 \mathrm{mc} . & =1 s t \text { IF frequency } \\
3 & =\text { multiplication }
\end{aligned}
$$

First IF Amplifier: The output of the first mixer is applied to a high " Q "
Filter consisting of $L-8, L-9$, then to the control grid of V-6, a 6HS6, then $\mathrm{L}-10$ to the grid of the 2 nd Mixer. L-8, L-9, and L- 10 form a very selective band pass filter at 7.0 mcs .

LF Oscillator: The LF (low frequency) oscillator, V-7A, is a modified Pierce crystal-controlled oscillator. The frequency of this oscillator is approximately 7. 455 Mcs . The output of this oscillator is capacitive coupled to the 2nd Mixer Grid, V-7B. V-7 is a 12AT7, one half of which is utilized as the LF Oscillator and the other triode section as the 2nd Mixer.

Second Mixer: Both the 7.455 Mcs. output of the LF Oscillator and the 7 Mcs. output of the first IF Amplifier are applied to the grid of the second mixer tube, V-7B. Heterodyning occurs within the second mixer and the difference (455 Kcs) is used as the second mixer output. The output of the second mixer is capacitive coupled to Fl-1, a very selective band-pass filter, and then to the grid of V-8, a 6HS6, the 2nd IF Amplifier. Fl-1 is a fixed tuned band-pass filter, with the center frequency being $455 \mathrm{Kcs}$. , and is the prime determinate of the pass band of the MR-30/150-170 Receiver.

Second IF Amplifiers: The output of Filter Fl-1 is applied to the Grid of V-8, and lst in a series of two IF Amplifiers at 455 Kcs . The output of V-8, a 6HS6, is fed to the grid of V-9, a 6HS6, via the filter consisting of L-12, a doubletuned filter. The output of V-9, a 6HS6, is fed to the grid of the lst limiter, V-10, via L-13, another band -pass filter at $455 \mathrm{Kcs}$.

Limiters and Discriminators: The two limiter stages, V-10, and V-1l (both 6BH6) clip the tops and the bottoms of the incoming signals thereby eliminating noise peaks in the form of amplitude modulation. The output of these limiters are 455 Kcs .

The output of the second limiter, $\mathrm{V}-1$, is applied to the discriminator, V-12, a 6AL5 through Transformer L- 14 which is tuned to 455 Kcs for plus or minus 15 Kcs . acceptance. The discriminator circuitry transforms the frequency deviations into corresponding amplitude variations, thereby detecting the audio signal.

Limiters \& Discriminators (continued): Following an isolation resistor and coupling capacitor is a de-emphasis network which attenuates the high frequencies while emphasizing the low frequencies; this attenuation of the high frequencies is necessary because of the inherent pre-emphasis characteristic of the phase modulator in the FM transmitter being received.

Audio Amplifier: The audio amplifier tube V-13 (a 6CG7) is connected as a two stage amplifier with inverse feedback to lower distortion. The normal output level is plus 8 VU , into a 600 ohm line. The output plate of $\mathrm{V}-13$ is connected to Audio Transformer T-3 to a 600 ohm output. The 600 ohm output is connected to Terminals 1 and 3 on the receiver terminal board via the 4.5 Kcs LP Filter Switch and the 20 DB Pad Filter Switch. With the $4.5 \mathrm{Kcs}$. LP Filter and the 20 DB pad switches in the "OFF" position, the full plus 8 VU with a response up to 7.5 Kcs . is available at terminals 1 and 3 on the Receiver Terminal strip. If the output of the Receiver is to be connected to a local Audio Console, we suggest placing the 20 DB Pad Switch in the pad in "IN" position so as to provide the proper level for the console. This will provide a better signal to noise ratio than would lowering the audio gain control. The audio output level of the receiver should always be between plus 4 VU and plus 8 VU and the necessary level at the input to the load (such as an Audio Console) be by fixed pads.

When signals are being received by the MR - 30/150-170 Receiver below three (3) microvolts, approximately 8 DB of signal-to-noise improvement can be obtained by placing the $4.5 \mathrm{Kcs}$. LP Filter Switch in the " $I N^{\prime}$ " position. This will attenuate audio frequencies above 4500 cycles but will still be equal to a very good class telephone lines and will improve reception very noticeably (approx. 9 DB).

Squelch Circuit: The squelch circuit is designed to operate when a signal is received. The squelch circuit consists of two noise amplifiers, V-14A and $\mathrm{V}-14 \mathrm{~B}$, a 12 AX 7 , a noise rectifier, $\mathrm{V}-15 \mathrm{~A}$ and a relay amplifier tube $\mathrm{V}-15 \mathrm{~B}$. V-15A and V-15B are the two sections of a 12AT7. With no carrier received, the noise voltages appearing at the discriminator are amplified by the noise amplifiers and applied to the cathode of noise rectifier V-15A. The rectified current flows through V-15A; develops a negative grid bias which cuts off relay amplifier V-15B and thus prevents the relay in the plate of V-15B from operating. The squelch control ($\mathrm{P}-3$) adjusts the bias on the cathode of noise amplifier V-14B; thereby setting the level at which noise peaks drive V-14B into conduction.

When a signal is received, noise quieting occurs and the noise amplifier ($V-14 B$) drops below the level required to drive this tube into conduction. With V-14B cut off, noise rectifier V-15A also ceases to conduct; causing negative bias to disappear at the grid of V-15B allowing the tube to conduct and thus operate the squelch relay in the plate of $\mathrm{V}-15 \mathrm{~B}$. A filter network in the grid circuit of noise amplifier V-14A rejects voice frequencies from the noise amplifier circuit.

Receiver Alignment Procedure - General: The receiver is shipped from the factory with all tuning adjustments pre-set to the exact frequency (or frequencies) for which it was ordered and will require no further alignment under normal operating conditions. However, a periodic check of the receiver sensitivity should be made using the procedure outlined in the receiver alignment chart.

A Change in operating frequency, major repair work, or damage during shipment may necessitate re-alignment of the entire receiver. The following paragraphs and the receiver alignment chart present a complete alignment procedure.

Tool and Equipment Required

1. Insulated tuning tool.
2. Signal Generator - Measurement Corp. Model 560-FM; or equivalent.
3. Calibrated frequency indicator or crystal - controlled oscillator covering 455 Kcs and 7.0 mc with an accuracy of at least 0.005%.
4. AC VTVM or Noise and Distortion Equipment.
5. VTVM - RCA Senior Voltohmist.

ALIGNMENT PROCEDURE

1. Remove crystal X-2. Then, connect a 455 Kcs . Signal Source to the input of FL BP. (Junction of FL BP and C-39). This Signal Source should have an accuracy of at least. 005%. The Signal Source should be connected to the FL BP input through a small capacitor. (A Typical value .- 47 uuf).

With a VTVM connected to the WHITE Test Point (lst Limiter Grid), adjust the signal source output so the indicated voltage on the VTVM will be at least 3 volts. Now, adjust L-12, top \& bottom slugs, and L-13 TOP slug only, for maximum indicated voltage. In the tuning process the output of the signal source should be reduced to keep the indicated voltage within the 3 to 5 volt limits. The bottom slug of Ll 3 is not used in this model receiver. The adjustment of the bottom slug will have very litt le effect on the measured voltage on the WHITE Test Point.
2. Adjust the top slug of L-I4 (Discriminator Secondary) until it is near the top of the can. Then, with the VTVM connected to the GREEN Test Point (Discriminator Primary) adjust the Bottom Slug of Ll 4 for maximum indicated voltage. This should be between 12 and 17 volts.
3. With the VTVM connected to the BLUE Test Point (Discriminator Secondary) adjust the top slug of L-14 for zero voltage as indicated on the VTVM. The 455 KC IF and the Discriminator are now properly adjusted for sensitivity.
4. Install crystal X-2 in the crystal socket. Then, connect a 7.0 Mc. Signal Source to the junction of L-5, C-19 and C-20 through a small capacitor with a typical value of 5 uuf. With the VTVM connected to the WHITE Test Point, adjust the signal source output so the indicated voltage will be between 3 and 5 volts. The frequency of the 7.0 Mc source can be checked by connected the VTVM to the BLUE Test Point. All adjustments made in the alignment of the receiver from this point on should always have the signal on exact frequency. The signal source can always be checked by checking the VTVM voltage on BLUE Test Point. It will be zero volts with an "ON" frequency signal. With the VTVM on the WHITE Test Point, adjust L-8, L-9 and L-10 (both top and bottom slugs) for maximum indicated voltage, being certain to adjust the signal source output to maintain the indicated voltage between 3 and 5 volts. The adjustment of L-8, L-9 and L-10 should be repeated at least two times.
5. Now, with the VTVM on the RED Test Point and the variable capacitor C-68 adjusted to approximately 50% capacity, adjust $L-6$ and $L-7$ for maximum indicated voltage. After L-6 and L-7 have been adjusted for maximum voltage, then C-68 (a 4 to 30 uuf trimmer) can be adjusted for maximum voltage as indicated on VTVM. The indicated voltage on VTVM should be between. 6 Volts and 1.0 Volts.

ALIGNMENT PROCEDURE (continued)

6. Now connect an "ON" frequency signal source to the Antenna Input Connector J-1, a coaxial connector SO-239. Then, with the VTVM connected to the WHITE Test Point, adjust L-1, L-2, L-3, L-4 and L-5 for maximum indicated voltage being certain to adjust the output of the "ON" frequency signal source to maintain between 3 and 5 volts on VTVM and frequently checking the Signal Source frequency by checking voltage on BLUE Test Point. With the "ON" frequency signal source connected to J-1 and the VTVM on WHITE Test Point, now re-check adjustment of $L-8, L-9$ and $L-10$ for maximum indicated voltage on VTVM. Be certain the signal source is exactly on frequency. Now P.-l, a voltage control in the screen of V-6, can be adjusted so with an input signal of . 5 microvolts the VTVM when connected to the WHITE Test Point will indicate 3 volts.
7. The ORANGE Test Point is used only in the event of strong signals. This test point is used for signal level indication only. With a VTVM or a 50 microampere meter connected between ORANGE Test Point and GROUND, a convenient method of indication of signal strength is available.
8. Now apply an "ON" frequency signal, within. 0002% of desired frequency, from an external source such as a frequency meter on a transmitter with a known frequency. The measured voltage with the VTVM on the BLUE Test Point should be within one volt. The receiver can then be adjusted to exact frequency by a slight adjustment of C-68 (a 4-30 ceramic trimmer located under chassis on the crystal socket for 0-1).
9. Then, apply a modulated signal from the desired transmitter such as a Marti Electronics Model M-30B that is adjusted for 7.5 Kcs . deviation with a 1000 cycle tone. Then with noise and distortion equipment across the output of the MR 30/150-170 terminals \#1 \& \#3, adjust the primary and secondary of L-14 for minimum distortion, being certain that the voltage indicated on the VTVM at BLUE Test Point is zero voltage. Be certain the transmitter is on the exact desired frequency before any adjustments are attempted.
10. Now, with a signal source such as an adjustable signal generator, adjust the squelch adjustment $(P-3)$ so the squelch will operate on .4 microvolts.
11. The receiver is now properly aligned and adjusted for best operation.
12. All readings on the VTVM are made with the common probe to ground and all readings are negative except on BLUE Test Point and the voltage at this point could be either positive or negative according to frequency of the received signal.

MR 30/150-170 RECEIVER

FILTERS

BPl Filter, Band-Pass, fixed tuned, 455 kcs , Motorola SK-9484W.

CAPACITORS

CE Capacitor, filter, $80-80-60 \mathrm{mfd}, 300 \mathrm{~V}$.
C2 Capacitor; discap; :001mfd, 500V.
C2A Capacitor, discap, $47 \mathrm{mmfd}, 600 \mathrm{~V}$.
C3 Capacitor, discap, . 001mfd, 500 V .
C4 Capacitor, feed-thru, . $001 \mathrm{mfd}, 500$ V., Aerovos \#7523.
C5
C6
C7
C8
C9
C10
Same.
Capacitor, tubular, $3.9 \mathrm{mmfd}, 5 \%, 500 \mathrm{~V}$.
Capacitor; discap, $5 \mathrm{mmfd}, 5 \%, 500 \mathrm{~V}$.
Capacitor, tubular, $3.9 \mathrm{mmfd}, 5 \%, 500 \mathrm{~V}$.
Capacitor; discap; $10 \mathrm{mmfd}, 10 \%, 500 \mathrm{~V}$.
Capacitor, discap, . 001mfd, 500 V .
Cll Capacitor, feed-thru, . 001mfd, 500 V., Aerovox \#7523.
C12
C13
C14
C15
C16
C17
C18
C19
C20
C21
C22
C23
C24
Same.
Capacitor, tubular, $3.9 \mathrm{mmfd}, 5 \%, 500 \mathrm{~V}$.
Capacitor, tubulars, $7.8 \mathrm{mmfd}, 5 \%$, (Two 3.9 mmfd in parallel.)
Capacitor, discap, . 001mfd, 500 V .
Same.
Capacitor, tubular, . $27 \mathrm{mmfd}, 5 \%, 500 \mathrm{~V}$.
Same.
Capacitor, tubular, . $12 \mathrm{mmfd} .10 \%, 500 \mathrm{~V}$.
Capacitor, tubular, $1.0 \mathrm{mmfd}, 5 \%, 500 \mathrm{~V}$.
Capacitor, discap, $22 \mathrm{mmfd}, 5 \%, 500 \mathrm{~V}$.
Capacitor, tubular, $3.9 \mathrm{mmfd}, 5 \%, 500 \mathrm{~V}$.
Capacitor, discap, . $001 \mathrm{mfd}, 500 \mathrm{~V}$.
C25
C26
C27
Not used in this model.

C28
C29 Capacitor, feed-thru, . 001mfd, 500 V, Aerovox \#7523.
C30
C31 Capacitor, discap, . $005 \mathrm{mfd}, 1000 \mathrm{~V}$.
C32 Capacitor, discap,.001mfd, 500 V.
C33
C34
C35
Same.

C36
C37
C38
C39
C40
C41
C42

PARTS LIST
MR-30/150-170 R ECEIVER
CAPACITORS (continued)
C43
C 44
C45
C46
C47
C48
C49
C 50
C51
C 52
C53
C54
C55
C56
C57
C58
C59
C60
C61
C62
C63
C64
C65
C66
C67
C68
C69
C70
C 71
C 72
C73
C74
C75
C 76
C77
C78
C79
C80
C81
C82
C83
C84
C85
C86
Capacitor, discap. $22 \mathrm{mmfd}, 5 \%$, 500 V .
Capacitor, discap, $47 \mathrm{mmfd}, 600 \mathrm{~V}$.
Capacitor, discap, $.001 \mathrm{mfd}, 500 \mathrm{~V}$.
Capacitor, discap, . $01 \mathrm{mfd}, 1000 \mathrm{~V}$.
Same
Capacitor, discap, $47 \mathrm{mmfd}, 600 \mathrm{~V}$.
Capacitor, discap, . $01 \mathrm{mfd}, 1000 \mathrm{~V}$.
Capacitor, discap, $.001 \mathrm{mfd}, 600 \mathrm{~V}$.
Capacitor, discap, $.01 \mathrm{mfd}, 1000 \mathrm{~V}$.
Same
Capacitor, discap, $22 \mathrm{mmfd}, 5 \%, 500 \mathrm{~V}$.
Capacitor, discap, . $01 \mathrm{mfd}, 1000 \mathrm{~V}$
Same
Capacitor, discap, $470 \mathrm{mmfd}, 10 \%, 1000 \mathrm{~V}$.
Same
Same
Capacitor, discap, . $02 \mathrm{mfd}, 20 \%, 1000 \mathrm{~V}$.
Capacitor, . $05 \mathrm{mfd}, 400 \mathrm{~V}$
Same
Capacitor, discap, . $005 \mathrm{mfd}, 1000 \mathrm{~V}$
Capacitor, $25 \mathrm{mfd}, 15 \mathrm{~V}$

Same
Capacitor, variable, $4-30 \mathrm{mmfd}$, Reliance \#TS2A
Capacitor, discap., . $005 \mathrm{mfd}, 1000 \mathrm{~V}$
Capacitor, discap, $10 \mathrm{mmfd}, 5 \%, 500 \mathrm{~V}$
Capacitor, tubular, $.27 \mathrm{mmfd}, 5 \%, 500 \mathrm{~V}$
Capacitor, discap, $3.9 \mathrm{mmfd}, 5 \%, 500 \mathrm{~V}$
Capacitor, discap, . $001 \mathrm{mfd}, 500 \mathrm{~V}$
Distributive capacity across coil in L7
Capacitor, 6 mmfd , 500 V (One 5 mmfd and one 1 mmfd in parallel)
Not used in this model
Not used in this model
Capacitor, tubular, $.25 \mathrm{mfd}, 200 \mathrm{WVDC}$
Capacitor, feed-thru, . 001 mfd , 500V, Aerovox \#7523
Same
Same
Same
Capacitor, discap, $470 \mathrm{mmfd}, 25 \%, 500 \mathrm{~V}$
Same
Capacitor, discap, $01 \mathrm{mfd}, 1000 \mathrm{~V}$

Capacitor, discap, $10 \mathrm{mmfd}, 500 \mathrm{~V}$ (Used on dual frequency model only)
Capacitor, variable, $4-30 \mathrm{mmfd}$, Reliance \#TS2A (Used on D. F. Modelo Capacitor, discap, . $001 \mathrm{mfd}, 500 \mathrm{~V}$ (Used on dual frequency model only)

Capacitor, discap, $3.9 \mathrm{mmfd}, 5 \%, 500 \mathrm{~V}$ (Omitted on dual frequency moć

MARTI ELECTRONICS Cleburne, Texas

MR30/150-170 RECEIVER
CAPACITORS (continued)
C87 Capacitor, discap, $47 \mathrm{mmfd}, 600 \mathrm{~V}$.
C88 Capacitor, discap, $22 \mathrm{mmfd} .5 \% 500 \mathrm{~V}$.
C89 - Capacitor, discap, $470 \mathrm{mmfd}, 5 \%, 500 \mathrm{~V}$.
C90 Same.
C91 Capacitor, $05 \mathrm{mfd}, 500 \mathrm{~V}$.
C92 Capacitor, discap, . $001 \mathrm{mfd}, 500 \mathrm{~V}$.
C93 Capacitor, 5 mfd , $25 \mathrm{~V} ., \mathrm{APD}-016$.
C94 Capacitor, discap, . $001 \mathrm{mfd}, 500 \mathrm{~V}$.
C95 Same.
C96 : Same.
C97 Capacitor, feed-thru, . 001 mfd 500V., Aerovox \#7523.
C98 Same.
C99 Same.
Cl00 Same.
Cl01 Same.
DIODE RECTIFIERS.
Dl Rectifier, silicon, 800 PIV, 500 ma., Erie ED- 3010
D2 Same.
FUSES
Fl Fuse, 3AG, 2.5 amp., slo-blow.
J ACKS
Jack, \#SO-239.
RELAYS
K1 Relay, 3.1 MADC, 10K ohms, Cont. 1A, 29 VDC, American Zettler AZ420-408-4L.

INDUCTORS
Filter, band-pass, 4 turns \#20 wire, double-spaced on National Coil Form \#PNCF-2-B with C809 slug.
L2 Same.
L3 Same, except with tap at 3/4 turn from ground side.
L4 Same as Ll and L2.
L5 Same as Ll and L2.
L6 Same as Ll and L2.
L7 Filter, band -pass, 3 turns \#20 wire, double-spaced on National Coil form \#PNCF-2-B with C809 slug.
L8 Filter, IF, 7 mc., Radio Industries EO-15382-1.
L9 Same.
L10 Same.
Lll Not used in this model.

MR 30／150－170 RECEIVER
INDUCTORS（continued）
L12 Filter，band－pass， 455 kcs．，Radio Industries \＃EO－15695．
L13 Same．
L14 Filter，discriminator， $455 \mathrm{kcs}$. ，Radio Industries \＃EO－15694－RI．
L15 Filter，choke，l． 8 uh． 1000 ma．Ohmite \＃Z－144．
Ll6 Filter，choke，luh． 900 ma．，Delevan \＃1840－10．
L17 Same．
L18 Same．
L19 Filter，choke，3．9 uh．， 1130 ma．，Delevan \＃1840－20．（Used on dual－ frequency only．）
L20 Filter，choke， 3.9 uh．， 1130 ma．Delevan \＃1840．．20．
L21．Filter，choke 3 hy．， 110 ma ．\＃2000．
L2z Same．

OVENS

Ol Oven， 12.6 volt，Ovenaire \＃SA－2．
POTENTIOMETERS
P2 Potentiometer，500K ohms，ML－5545．
P3 Potentiometer，25K ohms，ML－5544．

PILOT LAMPS

PLl Pilot lamp， 12 volt，Drake \＃5100－182．
Note：Use GE \＃756 replacement bulb．
RESISTORS
Rl Resistor，10K ohm， 1 watt， 5% 。
R2 Same．
R3 Resistor， 100 K ohm， $1 / 2$ watt， 5% 。
R4 Resistor， 470 K ohm， $1 / 2$ watt， 5% ．
R5 Resistor， 47 K ohm， $1 / 2$ watt， 5% ．
R6 Resistor， 27 K ohm， $1 / 2$ watt， 10% ．
R7 Resistor， 47 K ohm， $1 / 2$ watt， 5% ．
R8 Same．
R9 Same．
Rl0 Resistor， 150 K ohm， $1 / 2$ watt， 10% ．
Rll Resistor， 47.00 ohm l／2 watt， 5% ．
R12 Resistor， $68 \mathrm{ohm}, \mathrm{l} / 2$ watt， 10% ．
R13 Resistor， 27 K ohm， $1 / 2$ watt， 10% 。
R14 Resistor， 10 K ohm， 1 watt， 5% ．
R15 Resistor， 560 ohm， $1 / 2$ watt， 5% ．
R16 Resistor， 47 K ohm， $1 / 2$ watt， 5% ．
R17 Resistor， 470 K ohm， $1 / 2$ watt， 5% ．
R18 Resistor， 47 K ohm， $1 / 2$ watt， 5% ．
R19 Resistor， 10 K ohm， $1 / 2$ watt， 5% ．
$\frac{\text { MR } 30 / 150-170 \text { RECEIVER }}{\text { RESISTORS (continued) }}$
R20 Resistor, 2200 ohm, $1 / 2$ watt, 5%.
R21 Resistor, 4700 ohm, $1 / 2$ watt, 5%.
R22 Resistor, 470K ohm, $1 / 2$ watt, 5%.
R23 Resistor, 100 K ohm, $1 / 2$ watt, 5%.
R24 Resistor, 68 ohm, $1 / 2$ watt, 10%.
R25 Resistor, 68 K ohm, 1 watt, 10%.
R26 Resistor, 1800 ohm, $1 / 2$ watt, 10%.
R27 Resistor, 22 K ohm, $1 / 2$ watt, 5%.
R28 Resistor, 47 K ohm, $1 / 2$ watt, 5%.
R29 Resistor, 150 K ohm, $1 / 2$ watt, 10%.
R30 Resistor, 22 K ohm, $1 / 2$ watt, 5%.
R31 Resistor, $68 \mathrm{ohm}, 1 / 2$ watt, 10%.
R32 Resistor, 68 K ohm, $1 / 2$ watt, 10%.
R33 Resistor, 22 K ohm, $1 / 2$ watt, 5%.
R34 Resistor, 1800 ohm, $1 / 2$ watt, 10%.
R35 Resistor, 47 K ohm, $1 / 2$ watt, 5%.
R36 Resistor, 100 K ohm, $1 / 2$ watt, 5%.
R37 Resistor, 27 K ohm, $1 / 2$ watt, 10%.
R38 Same.
R39 Same.
R40 Resistor, 22 K ohm, l,watt, 10%. R41 Resistor, 47 K ohm, $1 / 2$ watt, 5%. R42 Same.
R43 Resistor, 15 K ohm, 1 watt, 5%.
R44 Resistor, 4700 ohm, $1 / 2$ watt, 5%.
R45 Resistor, 470 K ohm, $1 / 2$ watt, 5%.
R46 Resistor, 100 K ohm, $1 / 2$ watt, 5%.
R47 Same.
R48. Resistor, 470 K ohm, $1 / 2$ watt, 5%.
R49 Resistor, 100 K ohm, $1 / 2$ watt, 5%.
R50 Resistor, 470 K ohm, $1 / 2$ watt, 5%.
R51 Resistor, 2200 ohm, $1 / 2$ watt, 5%.
R52 Resistor; 47K ohm, l/2 watt, 5\%.
R53 Resistor, 470 K ohm, $1 / 2$ watt, 5%.
R54 Resistor, 680 ohm, $1 / 2$ watt, 5%.
R55 Resistor, 47 K ohm, $1 / 2$ watt, 5%.
R56 Resistor, 27 K ohm, $1 / 2$ watt, 5%.
R57 Same.
R58 Resistor, 4700 ohm, $1 / 2$ watt, 5%.
R59 Resistor, 2.2 meg., $1 / 2$ watt, 10%.
R60 Resistor, 47 K ohm, $1 / 2$ watt, 5%.
R61 Resistor, 1 meg., $1 / 2$ watt, 10%.
R62 Resistor, 12 K ohm, $1 / 2$ watt, 10%.
R63 Resistor, 470 K ohm, $1 / 2$ watt, 5%.
R64 Resistor, l meg., $1 / 2$ watt, 10%.
R65 Same.

MR-30/150-170 RECEIVER
$\frac{\text { RESISTORS (continued) }}{270 \mathrm{~K} \text { ohm, } 1 / 2 \text { watt, } 10 \%}$

R 66
R67
R68
R69
R70
R 71
R72
R73 \& R74
R75
R 76
R77
R78
470 K ohm, $1 / 2$ watt, 5%
180 K ohm, $1 / 2$ watt, 10%
270 K ohm, 1 watt, 10%
6800 ohm, $1 / 2$ watt, 10%
1.2 meg., $1 / 2$ watt, 10%

150 ohm, $1 / 2$ watt, 5%
560 ohm, 1/2 watt, 5%
150 ohm, $1 / 2$ watt, 5%
10 ohm, 2 watt, 10%
100 K ohm, 1 watt, 5%
1714 ohm , (One $12 \mathrm{~K}, 1 \mathrm{~W}, 10 \%$ and one $2 \mathrm{~K}, 5-8 \mathrm{~W}$. in parallel)
SWITCHES
Sl Toggle, SPST
S2 \& S3
3 amp., 125 V , DPDT
TRA NSFORMERS
T2
T3

TB1
TB2

TP1
TP2
TP3
TP4
TP5

V1 thru V4
V5
V6
Power, primary 117 volt, secondary 290 volt C.T. @ 250 ma , 12.6 volt C.T. @ 5 amps \#P60328

Output, primary 20K ohm, C. T., secondary 150/600 ohms.\#AT-141
TERMINAL BOARDS
7-terminal
3-terminal
$\frac{\text { TEST POINTS }}{\text { Red, \#119466-B }}$
Orange, \#119466-F
White, \#119466-A
Green, \#119466-E
Blue, \#119466-G
TUBES
Nuvistor, 6DS4
Nuvistor, 6DS4 (Used on dual-frequency models only)
6HS6
V7 12AT7
V8 \& V9 6HS6
V10 \& V11 6BH6
V12
6AL5
V13
6CG7
V14
V15
12AX7
12AT7
V16
Voltage regulator, OB2

MR-30/150-170 RECEIVER
CRYSTALS
X1 Piezo type 2001. (Specify channel frequency when ordering)
X1A
Piezo type 2001. (Used on dual frequency model only)
X2
International MX017G. (Specify channel frequency when ordering)

TRANSFORMER CONNECTION DATA:

T3
Output transformer:
Primary
20 K ohm - Red and blue
C. T. -White

Secondary
600 ohm - Use Green \& Blue - White Tie Black to Red - White

150 ohm - Use Green \& Black
Tie Green to Red-White \& Black to Blue-White

Connect a single-pole, double-throw switch or relay to the receiver terminals 2, 4 and 5. Connect the center leg of the switch to terminal number 2 and the other sections of the switch to terminals 4 and 5 . This switch can be mounted up to 40 feet from the receiver if a two-conductor, shielded cable is used. Switch function is to ground the cathode of the oscillator of the desired frequency. See diagram below and schematic diagram.

Connect telephone line to terminals numbered 1 and 3 .
Connect terminal number 2 to a good earth ground.
Connect telephone line at Studio to Remote Input Terminals.
 W

Connect telephone line to terminals numbered 1 and 3 .
Connect terminal number $\underline{2}$ to a good earth ground.
Connect a jumper from terminal number 2 to terminal number 6 .
Remove the center-tap of T-3 (black \& white wires) under chassis from ground and solder to terminal number 7 of receiver terminal strip under chassis.
Connect the telephone line to Repeater Coil at Studio. The output of the repeater coil should be connected to the Audio Input of the Console.

WHEN USING THE MR-30/150-170 RECEIVER IN REMOTE OPERATION, THE 20 DB PAD SHOULD BE IN THE "OUT" POSITION.

RECEIVEP LOCATICN

Tube No. \& Type
V-8 6HS6

V-9 6HS6

V-10 6BH6

V-11 6BH6

V-12 6AL5
1
$2-9$ to -17 Volts

0 Volts when on exact frequer Could vary + or - 10 Volts.
Varies with adjustment of Primary of L-14.

30 Volts
4 6.3 Volts AC
50 Volts
6 O Volts
7 Same as Pin Number 2.

Delete all circuitry from Pin No. 2 of V-3 (6DS4) to Pin No. 1 of V-6 (6HS6) and insert above circuitry
$\mathrm{L}-8$, L-9, and L-10 are changed from 7.0 Mcs . to 10.7 Mcs .
$\mathrm{X}-1$ Frequency is $\frac{\text { Carrier Frequency }-10.7 \mathrm{Mcs}}{3}$
X-2 Frequency is 11.155 Mcs.
lst IF Frequency was changed from 7.0 Mcs . to 10.7 Mcs .

L-8 ----- Marti L-8 (X) Special
L-9 ----- Marti L-9 (X) Special
L-10 --. Miller 1457
Xtal/Filter -- 10.7-30
On MR-25/150-170 C
Delete R-13

Marti Electronics

Modification on
MR-30/150-170 DWG 102 to
become MR-30/150-170 (X).
\&
Modification on
MR-25/150-170 C on DWG 120
to become MR-25/150-170 C (X).

On MR - 30/150-170----
Delete C-24, R-13\&R-16.

TY
Tube No. \& Type Pin No. \& Reading Special Notes
V-13 6CG7
i
156 Volts
20 Volts

3 2.2 Volts
4 6.3 Volts AC
$5 \quad 0$ Volts
6165 Volts
$7 \quad 0$ Volts
84.7 Volts

90 Volts
V-14 12AX7

V-15 12AT7

$$
\begin{array}{lrll}
1 & 126 & \text { to } 170 \text { Volts } & \text { Varies with squelch adjustment. } \\
2 & 0 \text { to }-9.0 \text { Volts } & \text { Varies with squelch and signal. } \\
3 & 0 \text { to } .8 \text { Volts } & \text { Varies with squelch and signal. } \\
4 & 0 \text { Volts } & \\
5 & 12.6 \text { Volts AC } & \\
6 & 0 \text { to }-10 \text { Volts } & \text { Varies with squelch and signal. } \\
7 & 0 \text { to }-10 \text { Volts } & \text { Varies with squelch and signal. } \\
8 & 1.7 \text { Volts } & \\
9 & 6.3 \text { Volts AC } &
\end{array}
$$

All readings with a Vacuum Tube Voltmeter except AC Voltage Readings. AC Voltage Readings with AC Volt Meter.

All DC readings are considered normal if within plus or minus 20% of typical readings.

Delete FL-BP
Add L-11 Same as L-12 Radio Industries EO-15694-R1
Add C-105 Discap, $5.0 \mathrm{mmfd}, 5 \%, 500$ Volts.
Add C-106 Discap, $47 \mathrm{mmfd}, 5 \%, 500$ Volts.

Replace FL-BP with L-11, C-105 \& C-106.

> Marti Electronics
> Modification on
> MR-30/150-170 DWG 102
> to become MR $-30 / 150-170$ (X).

Page No. 2

MARTI O-1A SOLID STATE OVEN

THIS EQUIPMENT IS SUPPLIED WITH THE MARTI O-lA SOLID STATE PROPORTIONAL TEMPERATURE CONTROLLED CRYSTAL OVEN AND SPECIA L HIGH ACCURACY CRYSTAL. THIS OVENCRYSTAL COMBINATION PROVIDES FREQUENCY STABILITY OF. 0005% FROM $-30^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$. DO NOT USE THIS CRYSTAL IN CONVENTIONAL HIGH TEMPERATURE OVENS OR USE CONVENTIONAL CRYSTALS IN THIS SOLID STATE OVEN. THE O-1A OVEN DOES NOT PRODUCE TEMPERATURES HIGH ENOUGH TO DETECT BY TOU CHING THE ALUMINUM HOUSING.

