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ABSTRACT
Ribbon microphones are known for their warm sonics, owing in part to the unique ribbon motion induced
by the sound field. Here the motion of the corrugated ribbon element in a sound field is considered, and
a physical model of the ribbon motion is presented. The model separately computes propagating torsional
disturbances and coupled transverse and longitudinal disturbances. Each propagation mode is implemented
as a mass-spring model where a mass is identified with a ribbon corrugation fold. The model is parameterized
using ribbon material and geometric properties. Laser vibrometer measurements are presented, revealing
stiffness in the transverse and longitudinal propagation, and showing close agreement between measured and
modeled ribbon motion.

1. INTRODUCTION

Ribbon microphones were among the first micro-
phones developed [1], and are still sought after to-
day. The unique sonics of ribbon microphones gave
us classic vocal recordings from the 1950’s, and many
still consider them to be an indispensable part of any
full microphone locker [2]. Ribbon mics are often
described as having a “warmth” or “smoothness,”
which likely results from a combination of the fre-
quency response and transducer nonlinearities.

Designed by Harry Olson for RCA in the 1930s,
early ribbon microphones such as the RCA 77 se-
ries (Fig. 1) featured an aluminum ribbon having
an elongated rectangular design incorporating folds
or corrugations oriented perpendicular to the ribbon
axis [3]. This corrugated ribbon design can also be
found in the classic Coles 4038 and the RCA44A.

The mechanism of the ribbon microphone is straight-
forward: a thin metal filament is set in motion by
incident sound waves, and the velocity of the ribbon
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Fig. 1: Classic RCA 77D Microphone (left) [21],
and corrugated ribbon from a Nady RSM-4 ribbon
microphone (right). The corrugations stiffen the rib-
bon against off-axis motion.

in a permanent magnetic field creates a voltage sig-
nal [3]. The corrugations stiffen the ribbon against
off-axis motion and keep the ribbon flexible through-
out its length [1]. In order to better understand the
sound of the classic ribbon mics, in this paper we
explore the motion of the corrugated ribbon in re-
sponse to a sound field, and present a physical model
of the ribbon motion.

Traditional analysis of the ribbon microphone

[3][4][5][6] assumes the ribbon to behave as a single

lumped mass connected to a spring, oscillating at a

single resonant frequency, typically in the range of

15–40Hz [7]. This analysis is adequate for explain-

ing the general response of the ribbon microphone,

which Olson describes as having a “uniform response

frequency characteristic over the entire audio fre-

quency range, and a uniform directivity pattern over

the entire audio frequency range” [3]. Ribbon mo-

tion is driven by the difference in pressure between

front and back of the ribbon, which, in turn, results

from a short acoustic delay D between the incident

sound waves at the front and back of the ribbon,

as seen in Fig. 2. The differential pressure ∆P , as

a function of wavenumber k and angle of sound in-

Fig. 2: Diagram of ribbon, magnets (‘poles’) and
impinging sound wave (taken from [3], page 264).
The geometry causes a small time delay D between
sound waves arriving at the front and the back of
the ribbon.

cidence θ and normalized by the on-axis ∆Pmax is

accordingly

∆P =
sin[(kD/2) cos θ]

kD/2
. (1)

Note that for small values of kD the cos θ term above
produces the well known figure of eight polar pattern
seen in Fig. 3.

The lumped mass model also predicts the flat fre-

quency response. From on-axis source P , differential

pressure ∆P at frequency ω and speed of sound c is

described by the equation

∆P = 2P cos (ωt) sin

[
ωD

2c

]
, (2)

where the substitution k = ω/c has been made, cf.

([3], equation 1). ∆P maintains a 6dB per octave

highpass characteristic at low frequencies (Fig. 4).

The output signal is proportional to the ribbon ve-

locity ẋ, which for a ribbon with surface area A and

mass mR (which Olson lumps with the mass of air

mA, on either side), can be described in the lumped

mass approach by

ẋ =
∆PA

jω(mR +mA)
, (3)
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Fig. 3: Characteristic figure-of-eight pattern of
Coles 4038 ribbon microphone measured at 1kHz.
Nulls are especially strong in ribbon microphones
for off-axis sound sources, as such sources produce
little differential pressure

Fig. 4: Differential sound field pressure driving
force ∆P as a function of acoustic path length D and
wavelength λ. The time delay D shown in Fig. 2 cre-
ates a 6dB per octave highpass for low and mid fre-
quencies, and produces a spectral null as the wave-
length λ approaches D.

Fig. 5: Ribbon velocity of ribbon as a function of
driving frequency. The 6 dB per octave highpass
driving force for low frequencies shown in Fig. 4 is
balanced by the 6 dB per octave lowpass due to the
ribbon mass to produce a characteristic ribbon mic
response. The output signal is proportional to the
ribbon velocity.

Fig. 6: Measured frequency response of a Coles
4038 ribbon microphone. Note the null and peak at
frequencies above 10kHz as anticipated by Olson’s
lumped mass model [3] in Fig. 5.

which creates a 6dB per octave lowpass characteris-
tic. When combined with the driving pressure high-
pass (Fig. 4), the velocity takes on the frequency re-
sponse curve shown in Fig. 5, which shows the same
general shape as the measured response of a Coles
4038 ribbon microphone shown in Fig. 6.

While the traditional lumped-mass model describes
the overall frequency response of the ribbon micro-
phone, it misses some of the nuances caused by
more complex motions. Shorter and Harwood, for
example, noted that in the absence of a damping
screen, the ribbon microphone displays sharp reso-
nant peaks at various harmonics of the fundamental
resonance [7].
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Physical models of microphones have been devel-
oped in the past. Olson created models of many
types of microphones, using analog circuit equiva-
lents of many of the acoustic and mechanical com-
ponents of microphones [4]. Leach[12] and Wells[13]
use SPICE to implement circuit equivalents of mi-
crophones. Roger Grinnip has recently created a
thorough finite-element model of a condenser mi-
crophone, including in-depth behavior of the mem-
brane, very accurately describes the microphone fre-
quency response [8].

Bank and Hawksford [9][10], also employing finite el-
ement methods, presented a model of a ribbon loud-
speaker which was able to show harmonic resonant
characteristics of the ribbon motor.

Julian David [11] has recently built upon the work
of Richard Werner [5], describing the way that the
transformer and preamplifier actually alters the me-
chanical behavior of the ribbon in a ribbon micro-
phone, although still a lumped mass is used to de-
scribe the basic mechanics of the ribbon.

In this paper we examine the ribbon motion in a
more nuanced way. In Section 2, we consider the
motion of each fold of the corrugated ribbon, and
the various degrees of freedom available to it. In
Section 3, we present a physical model to describe
the shape of the ribbon as it evolves over time. In
Section 4, we verify the results of the model through
laser vibrometer measurements, and make adjust-
ments to the model to account for behavior found
in the measurements, specifically by incorporating a
stiffness term.

2. RIBBON MOTION

2.1. Ribbon Vibrational Modes

Consider the motion of the corrugated aluminum
ribbon suspended between two rigid terminations.
Each corrugation consists of two flat ribbon sections
connected by folds on either side. Five individual
vibrational modes become evident (Fig. 7): trans-
verse, side-side, longitudinal, torsional, and skew.

2.2. Modes of Vibration Considered

In order to simplify our analysis, we restrict con-
sideration of the vibrational modes to those that
contribute to the output signal, or are coupled to

Fig. 7: Ribbon vibrational modes include (a) longi-
tudinal, in which folds move along the ribbon axis,
(b) transverse, in which the folds move perpendicu-
lar to the plane of the ribbon, (c) side-side, in which
the folds move parallel to themselves in the plane
of the ribbon, (d) torsional, where the folds rotate
about the ribbon axis, and (e) skew, where the folds
rotate about an axis that is perpendicular to the
plane of the ribbon.

ones that do. This immediately allows us to reject
side-side modes from consideration, because the mo-
tion is parallel to the magnetic field lines and thus
do not generate voltage according to Faraday’s Law.
We can also eliminate the skew modes from con-
sideration, since the motion of the ribbon folds is
entirely vertical and thus any voltage induced would
be perpendicular to the terminals, creating zero out-
put signal. Torsional modes and transverse modes
both fit the criteria outlined above. It is interesting
to note that, in the presence of perfectly uniform
magnetic field lines, symmetric torsional modes will
induce no net voltage since equal parts of the rib-
bon are moving in opposite directions with respect
to the field lines. However, since we do not assume
a uniform field, these will still be considered.

Longitudinal modes do not directly create a volt-
age across the terminals. However, as we will show
later, longitudinal modes are coupled to the trans-
verse modes, and are therefore still considered.

Thus, we restrict analysis to three modes of motion:
longitudinal, transverse, and torsional modes. Anal-
ysis of these three modes as driven by both differen-
tial pressure and gravity will be considered.
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3. RIBBON DYNAMICS MODEL

There are a few well known approaches for model-
ing the motion of thin sheets of metal. One approach
applies a finite element methods, such as Bilbao, Ar-
cas, and Chaigne used to model plate reverb [14][15].
In their work, a discrete point of excitation was used
and the vibrations over time calculated at any point
on the membrane. This would also be similar to the
ribbon loudspeaker work by Bank and Hawksford[9],
where the ribbon was modeled using a matrix of
tiny mass-spring sheets, with the partial differen-
tial equations discretized. However, we would have
to add spatial variations to account for the increased
horizontal stiffness, nonuniform vertical propagation
speed (due to contoured corrugations), and set the
side and top boundaries according to stiff and open
terminations.

The approach that we have chosen offers an intu-
itive interpretation of the pertinent parameters such
as the catenary ribbon shape due to gravity and the
nominal corrugation distance. We separately con-
sider the torsional mode and the coupled transverse
and longitudinal modes, and present a mass-spring
model for each. In this way we hope to gain physical
insight into the motion and output of the ribbon as
it changes over time in a magnetic field.

3.1. Torsional Modes

Consider the way a single ribbon fold twists about
the ribbon axis. We model the torsional dynamics as
a series of rigid masses — one for each fold — with
moments of inertia mθ, coupled by linear torsional
springs each with spring constant kθ (see Fig. 8).

Using Newton’s equation for torsional motion we can

relate θi, the displacement of the ith fold, to the

net torque applied to it from external and internal

forces, τi, as

τi = mθθ̈i. (4)

The net torque, τi applied to a the ith fold con-
sists of the difference in acoustic pressure differential
τ∆P,i between the left and right halves, the damp-
ing torque, τd,i, which will always oppose torsional

velocity, θ̇i, and the torque from the springs, τs.

We consider the damping torque τd to be caused by

the viscosity of the air as well as heat generated by

θi θi+1θi -1

kθ

Fig. 8: Torsional mode of vibration. The ith fold
with moment of inertia mθ is rotated by the angle θi
and coupled to adjacent folds via torsional springs
with spring constant kθ.

the twisting of the aluminum. We approximate this

by implementing a damping constant, γθ, described

as

τd = −γθθ̇. (5)

Using Hooke’s Law to connect kθ, the torsional

spring constant, to τs, the torque applied to a fold

from adjacent folds, we have

τs,i = kθ[(θi+1 − θi) + (θi−1 − θi)], (6)

which leads to an expression for torsional motion,

mθθ̈+γθθ̇i−kθ(θi+1−2θi+θi−1) = τ∆P,i (7)

where again τ∆P,i is the acoustic driving torque due
to the difference in pressure differential between the
left and right halves of the ith fold.

This equation describes a standard “beaded string”
and as the corrugation size decreases to zero it re-
duces to a standard string wave propagation without
dispersion.

At the boundaries, we force the torsional displace-
ments to zero, and as such any torsional waves prop-
agating along the ribbon undergo an inverting reflec-
tion at the terminations.

3.2. Transverse/Longitudinal Modes

The transverse (along the x direction) and longitu-
dinal (along the z direction) modes are a bit more
complicated. Although the acoustic driving force
in the longitudinal direction is assumed to be neg-
ligible, we assume that large displacements in the
transverse direction cause the ribbon to move in the
longitudinal direction, coupling the modes together.
We model each ribbon section in between folds as a
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ξi-1

kξ

ξi+1

ξi = [xi, zi]
T
x

z

Fig. 9: Coupled transverse and longitudinal dis-
placements. The ribbon section in between each fold
is modeled as mass mξ with displacement vector ξi,
which contains the longitudinal (zi) and transverse
(xi) components, coupled by a spring with spring
constant kx.

mass mξ with displacement vector ξi, connected by
a linear spring with spring constant kξ (Fig. 9).

The dynamics of the masses are governed by New-

ton’s laws:

Fi = mξ ξ̈i, (8)

where the displacement of the ith mass has two com-

ponents,

ξi =

[
xi
zi

]
, (9)

as does the force

Fi =

[
Fx,i
Fz,i

]
. (10)

The force Fi driving the motion of the ith fold is
comprised of the force F∆P,i due to differential pres-
sure on the front and back of the fold, the force Fs,i
due to the Hooke’s Law, the force Fg,i due to grav-
ity (that at certain angles and cause the ribbon to
”droop” under low tension), and the damping forces
Fd,i.

For the Hooke’s Law force Fs,i, we assume that the
ribbon is held under extremely small but measurable
tension, so there is a nonzero nominal distance L0

between folds under zero tension which is less than
the distance under normal tension.

the force on the ith mass due to Hooke’s Law is

Fk,i = −kx
[
1− L0

||ξi − ξi−1||

]
(ξi − ξi−1)

− kx
[
1− L0

||ξi − ξi+1||

]
(ξi − ξi+1), (11)

where ||ξi − ξi−1|| is the length between positions ξi
and ξi−1.

The force due to gravity, Fg,i, is described by

Fg,i = mig

[
cosφ
sinφ

]
, (12)

where φ is the angle at which the ribbon is being
held with respect to gravity, and g is Newton’s grav-
itational constant.

Damping is again caused by the viscosity of the air

and heat losses in the aluminum, which can be ex-

pressed in a manner similar to that of the torsional

mode,

Fd,i = −γξ ξ̇i, (13)

where γξ is the coefficient of damping.

The total equation of motion for the ith fold is

mξ ξ̈i + γξ ξ̇i + kξ(ηi,i−1 + ηi,i+1)

= mig

[
cosφ
sinφ

]
+ F∆P ,i, (14)

where

ηa,b =

[
1− L0

||ξa − ξb||

]
(ξa − ξb). (15)

3.3. Simulated Vibrational Modes

The model enables examination of the behavior of
the ribbon in a simulated sound field. All three
considered modes create wave propagation along the
main axis of the ribbon, generating harmonic reso-
nances at certain frequencies. Fig. 10 shows a simu-
lated displacement of the coupled transverse and lon-
gitudinal modes at harmonic peaks, when exposed to
simulated plane waves. Excited by an on-axis plane
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Fig. 10: Transverse modes simulated by on-axis
driving pressure. Only the odd modes are stimu-
lated by on-axis impinging sound waves.

Fig. 11: Laser vibrometer snapshots of the first four
odd transverse resonances are shown, corresponding
to peaks in the RMS velocity spectrum in Fig. 13.

Fig. 12: Expected normalized frequency as a func-
tion of wave number k. Nulls occur where the waves
propagate exactly one fold per cycle so that no net
movement is detectable.

wave, the model only creates odd modes of vibra-
tion.

Furthermore, the spring-mass model predicts that
the propagation velocity should slow as the prop-
agation wavelengths approach a distance between
adjacent folds. This is a type of spatial aliasing,
and would take on the propagation characteristic of
Fig. 12 [16]. For wavelengths shorter than the dis-
tance between folds, we would expect there to be a
different propagation mode, as the aluminum itself
would be bending irrespective of the fold locations.

4. LASER VIBROMETER MEASUREMENTS

Laser vibrometer measurements were carried out us-
ing a Nady RSM-4 microphone and an on-axis loud-
speaker sound source. Sinusoidal sweeps were pro-
duced by the sound source while the laser vibrome-
ter measured the velocity and displacement at three
points along each corrugation.

Using the laser vibrometer data, the RMS velocity
spectrum of the ribbon was computed and plotted in
Fig. 13. Many resonances are visible, and snapshots
of the ribbon velocity excited by the first four reso-
nant frequencies can be seen in Fig. 11, and detail for
the third resonance is seen in Fig. 14. Fig. 15 shows
snapshots of the ribbon velocity excited at 298Hz as
it varies over time. This behavior is very similar to
that predicted by our model (Fig. 10).

There appeared to be little torsional movement
present in the laser measurements, although the on-
axis loudspeaker position tested was not expected to
excite these nodes very significantly. The snapshots
show a slight asymmetry on the left and right halves
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Fig. 15: Laser vibrometer images of transverse fold velocity in a 298Hz sound field is plotted over time.
This corresponds to the third transverse mode of vibration. (There appears to be a “stuck pixel” on the
right hand side, eighth pixel from the bottom. We believe this is due to misalignment with the laser, perhaps
measuring the position of the magnet next to the desired ribbon location.)

Fig. 13: Laser RMS velocity, averaged across the
entire ribbon

of the ribbon velocity, but we believe this to be due
to slight misalignments in the laser setup rather than
the presence of significant torsional components.

4.1. Stiffness

Consider the velocity spectrum shown in Fig. 13.
The peaks correspond to resonances, and these res-
onant frequencies below 4kHz are plotted as a func-
tion of wavenumber in Fig. 16. The slope of the fre-
quency vs. wavenumber characteristic is the prop-
agation speed, which appears to be increasing with
wavenumber, perhaps resulting from stiffness in the
ribbon.

Consider a sinusoidal disturbance ψ(x, t)

ψ(x, t) = ej(ωt−kx) (16)

Fig. 14: Laser vibrometer snapshot of transverse
fold velocity in a 298Hz sound field. This third mode
of vibration corresponds to a peak seen at 298Hz in
Fig. 13.
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Fig. 16: Measured frequency as a function of
wavenumber computed using the excited modes of
vibration under 4kHz and measured ribbon dimen-
sions to calculate wavenumber. The final points be-
low the projected line suggests that we are beginning
the downward trend predicted in Fig. 12.

propagating along a stiff string. The partial differ-

ential equation for a stiff string with damping is

∂2ψ

∂t2
+ γ

∂ψ

∂t
= c2∂

2ψ

∂x2
− β∂

4ψ

∂x4
, (17)

where the constant β quantifies the stiffness. The

propagation frequency ω is then a nonlinear function

of the wavenumber k, described by

ω2 = c2k2 + βk4. (18)

A least squares fit of the model to the data shows
good agreement to a polynomial of this form, cf.
Fig. 16.

The highest propagation frequencies in Fig. 16 are
slightly, but measurably less than that predicted by
the stiff string model, and perhaps indicate some
beaded-string characteristics as in Fig. 12. This pos-
sibility may be tested with higher spatial density
laser vibrometer measurements.

4.2. High Wavenumber Propagation

There appears to be another propagation region, in-
dicated by resonances at integer multiples of 7kHz.
It seems likely that these resonances are associated
with high wavenumber propagation — waves travel-
ing with wavelengths shorter than inter-fold spacing.

Such a mechanism is similar to that found in a heli-
cal coil, in which a beaded string behavior is seen for
wavelengths spanning many coils, and stiff string be-
havior is noted for higher wavelengths shorter than
a coil [17].

5. SUMMARY

In this paper, we considered the dynamic motion
of a corrugated ribbon in a ribbon microphone, ex-
panding upon Olson’s lumped mass analysis. We
developed a physical model to better understand
the motion. We verified our model using laser vi-
brometer measurements, and found that a stiffness
term was necessary to explain the mid-frequency be-
havior. We also observed large wavenumber prop-
agation, which may be modeled by a bidirectional
waveguide [19].

We hope to test other microphones such as the Coles
4038 or RCA 77D, to understand if there is a quali-
tative difference in behavior. Furthermore, it would
be interesting to study a microphone that uses a ver-
tical corrugation pattern, such as the Beyerdynamic
M260 [18]. Off-axis measurements should be taken
to explore the extent to which torsional waves are
excited, and all measurements should be taken at
higher spatial resolutions to validate our current re-
sults.
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