

© 2001-24 Alternative Management Technology Inc. All Rights Reserved.

Network Ferret ™

Programmer Guide
v12.4

 Network Ferret™ – Programmer Guide v12.4

Contents

Preface ……………………………………………………………………………………i
Network Ferret License Agreement .. i
About This Guide .. i

Who is This Guide For? .. i
Getting Additional Help ... i

Getting More Information .. i
Getting Support .. ii

1: Getting Started - Concepts .. 1
System .. 1
Agent ... 1

Master Agent vs. Subagent.. 2
Agent State.. 2
Config .. 2
Host ... 4
Processor .. 4
State Machines.. 4
Vendor Architecture ... 5
Logging ... 5
File Handling ... 5
Network Scanner ... 6

2: Basic Coding Examples ... 7
System .. 7
Agent ... 7

Subclass Agent .. 8
Agent State.. 8

Subclass Agent State .. 9
Config File Parameters .. 10
Hosts ... 10
Processors .. 10

Basic Processor ... 11
Synchronous Processor ... 12
SNMPTableProcessor ... 14

3: Types of Systems .. 16
Starting a multi-agent system .. 16

Things To Be Aware Of ... 16
Starting a single-agent system .. 17
Starting a “lazy” multi-agent system .. 17
Vendor Specifications .. 17

4: Pinging .. 18
PingAgent .. 18

Starting The PingAgent & Config Parameters.. 18
Synchronous Ping .. 19
Asynchronous Ping .. 20

 Network Ferret™ – Programmer Guide v12.4

Stopping The PingAgent .. 20
5: Credentials .. 21

Providing/Receiving Security Information .. 21
Possible Security Information .. 21
Credential Interface ... 21
Default Credential Interface ... 22
SNMP Credential Logic ... 23

6: Logging/Debugging ... 24
Logging ... 24
Debugging ... 24

Agent/Processor Debug ... 24
SNMP Debug ... 25
Java Memory Dumps ... 25

7: Protocols.. 26
SNMP and Buffers ... 26

High Volume .. 26
GETBULK .. 27

NetConf/REST... 28
8: Utilities ... 29

CacheMember ... 29
Converter... 29
DNSLookup ... 29
File .. 29
IFFilter ... 29
IPAddress .. 29
Queue ... 29
Reflection .. 30

9: Getting Started With Network Ferret .. 31
Before Writing Any Code ... 31
Network Ferret Architecture... 31
Wire Model .. 33
Customization Options .. 33

Customizing basic discovery.. 33
Customizing advanced discovery .. 34
Customizing vendor-specific information ... 34

10: Embedding the Discovery Engine .. 35
Environmental issues .. 35

Platforms and JREs ... 35
Java Native Image ... 35
Third Party Jars ... 36
Working with the configuration files ... 36

Running discovery programmatically ... 36
Running from within a Java program ... 36
Running as a standalone process .. 37

Handling discovery output ... 37
Registering with Network Ferret ... 37

 Network Ferret™ – Programmer Guide v12.4

Receiving progress and debug messages ... 38
Receiving error messages ... 38
Address parameters in messages ... 39
Receiving domain information.. 39
Error handling .. 42

Controlling a running discovery ... 43
Pausing discovery .. 43
Resuming discovery .. 43
Stopping discovery .. 43

Running Concurrent Discoveries ... 44
Querying Discovery For Progress ... 44
Providing Security Information... 45
Debugging while using Network Ferret .. 45

11: Extending Basic Discovery .. 46
12: The Wire Model ... 47

Design Considerations .. 47
Combining Discoveries .. 48

Serialization ... 48
Size of the Wire Model ... 49
Knitting ... 49
Performing a Knit ... 49
What Is and Is Not Analyzed on a Knit .. 50
Accessing The Wire Model .. 50

13: Creating An Advanced Discovery .. 51
Advanced Discovery Overview .. 52

14: Localization.. 53
Setting the Locale .. 53

Preface

 Network Ferret™ – Programmer Guide v12.4

i

Preface
This preface contains background information that you should know
before using this Guide.

Network Ferret License Agreement
Read The Terms And Conditions Of The License Agreement Found
In The Network Ferret User Guide.

About This Guide
The chapters of this guide contain explanations, reference
information, and examples of how create code independent of
Network Ferret (using NMSCore), how to embed Network Ferret
and how to extend Network Ferret functionality by writing Java
code.

Who is This Guide For?
This Guide is intended for programmers who want to embed
Network Ferret in their application or write Java code to extend the
functionality of Network Ferret.

This Guide assumes that readers already understand:

• How to program applications in Java.
• The basics of SNMP, Network Management.
• The basics of using operating systems such as Microsoft

Windows and Unix.

This Guide assumes readers already have:
• Access to a copy of the Network Ferret installation media.
• Become familiar with running Network Ferret and analyzing

the output it produces.

Getting Additional Help
The following sources of additional assistance and information are
available to all Network Ferret users.

Getting More Information
You can find additional information about Network Ferret in the
following related publications:

• Network Ferret User Guide: Intended for users who want to
understand how to run Network Ferret.

Preface

 Network Ferret™ – Programmer Guide v12.4

ii

• Network Ferret Domain Model: Intended for all users who
want to understand the data that Network Ferret generates.
This includes general models as well as models generated
by vendor-specific device handling.

Getting Support
When contacting support, be prepared with the necessary
information that will make handling your problem easier. You
should have:

• Log.txt (or your own log) – this may be called something else
by your application. This file can get rather large. If shipping
the file to support, it is best to zip it up. If the problem is
regarding a specific device, support may have you sort the
log and pull out the information for that device rather than
sending the entire log.

• Errors.txt – this may be called something else by your
application.

• Exceptions.txt – this may be called something else by your
application.

• In some cases support may ask you to zip up the config, log
and report directories.

The full name of the logs will be prefixed by the Agent’s name. For
Network Ferret this will be “discovery”.

 Network Ferret™ – Programmer Guide v12.4 1

1: Getting Started -
Concepts

The first part of this Guide will be about the general programming
architecture provided by NMS Core. For 20+ years we have wanted to
generalize the architecture so applications could be created
independent of auto discovery (Network Ferret). We were leery to do
so for fear of breaking something that was working and for always
thinking of some reason a new design would not work as well.

Here we will introduce some basic concepts.

If you simply want to embed Network Ferret without doing any of
your own extensions or independent agents, start with the
chaper: Getting Started With Network Ferret.

System
System maintains “global variables and Agents” to be shared by all
Agents running in the VM. Examples of global
variables/agents/services are the one PingAgent, the one
SNMPCredentialAgent and the one CredentialInterface. System can
be subclassed to add custom global variables.

Other services AtiSystem can provide are a global MIB Dump Agent
and a global DNS lookup service.

AtiSystem will determine the platform architecture and the default
gateway for the machine.

AtiSystem parses the OUI file from the config directory and provides a
few methods to translate MAC prefixes into a vendor string from the
file.

AtiSystem provides a simple Agent registry. A dictionary where key is
some string and value is the Agent instance. This allows Agents to find
each other and communicate.

Agent
Network Ferret is an Agent. It is a complex collection of logic and
threads of execution. Other Agents might be something like an agent

 Network Ferret™ – Programmer Guide v12.4 2

that collects time series data for performance analysis or an agent that
maintains configurations of network devices.

There can also be subagents which are an agent that has a master
agent. For example, the L2 and L3 advanced discoveries in Network
Ferret are subagents of the main discovery agent.

Master Agent vs. Subagent
Any Agent can have a master agent. The agent inherits the AgentState
from the master and will be shutdown when the master shuts down.
An example of this are the System agents (ping, credential and
mibDump). These agents can be started independently or they can be
part of a mater agent.

Network Ferret, for example, will check to see if a System ping agent
exists and, if not, create one that is a slave to Discovery. When
discovery finishes, the ping agent will be stopped.

A subagent is a bit similar. It also inherits the AgentState from the
master. However, a subagent is more tightly tied to the master in terms
of programming logic. The master feeds Hosts into the sub agent’s
queue. The master is monitoring the subagent for
status/completeness. In Network Ferret, the L2 and L3 advanced
discoveries are subagents.

Agent State
This concept existed in previous versions of Network Ferret.

The Agent State is a subclass of Java ThreadGroup. This allows
Threads created deep in the application logic to still have access to
“global variables”. Agent State also takes away the need for global
static variables defined in classes which can get messy and cause
bugs if multiple instances of an Agent are running or different agents
are sharing the same classes.

In theory, all subordinate threads should be stopped when the main
thread exits, but this is not always the case. Threads waiting on
something generally need to be bounced off the wait in order to exit.

Config
Config files exist in previous versions of Network Ferret, but the
concept has been expanded in V12 to provide more flexibility.

 Network Ferret™ – Programmer Guide v12.4 3

The Config is essentially a dictionary of key/value pairs parsed from
the config files for each Agent. The Agent State holds on to the Config
thus making it accessible to all threads in the Agent.

Where do config files come from?

AtiSystem has fields for root and config directories. These are used as
a last resort. But these are useful if the configs for all Agents are in the
same location. That depends on how you design your system. If one
group has control over all Agents, then it might be best to have all
configs in one location. If Agents are controlled by multiple
programming groups or 3rd parties, it may be best to segregate
config/log directories.

When an Agent is started, root and config directories can be passed in.
If these are NULL, then the AtiSystem directories are used. If these are
NULL, nothing happens. No files are read.

The first file read is defaults.cfg found in the AtiSystem config directory.

The second file read is defaults.cfg found in the Agent config directory

The third file read (optionally) is the file returned from the method
agentConfigFileName(). This can be NULL. Consider this file to be
defaults for the specific Agent. In the distribution you can find config
files for ping, credentials, discovery, etc.

The final file read is the config file passed in when the agent is started.
These are run-time parameters that will override any values in the
other files. This will also include parameters that simply do not exist in
the other files such as which IP addresses to work with in this run.

Why two defaults.cfg??
For flexibility. Suppose a 3rd party was distributing a collection of
agents. This 3rd party may want its own defaults.cfg for its collection of
Agents.

All of the config files can be bypassed for an Agent by passing in a
Properties object instead. For this reason, any Agent should have
hardcoded defaults that match the config file defaults so that the code
starting the Agent only must specify parameters it wants to change and
not ALL parameters.

 Network Ferret™ – Programmer Guide v12.4 4

Host
A Host represents an IP address being worked with. It maintains
credentials for various protocols, statistics, etc. This has existed in
previous versions of Network Ferret.

Processor
A Processor is a thread of execution. This is a big change from
previous versions of Network Ferret where the thread of
execution and the domain logic were bound together. No more.

If you have written your own Network Ferret extensions, these will
need to be modified.

For example, the SNMPTableProcessor has been split into the
SNMPTableProcessor (thread of execution) and the
SNMPTableWalker (table walking logic). An SNMPTableWalker can be
used with or without an SNMPTableProcessor.

This allows two competing styles of architecture. Network Ferret is built
to scale massively while minimizing OS resources. Network Ferret
uses Processors that allow many Hosts (IP addresses) to share the
same thread of execution and SNMP socket.

With NMSCore, an architecture can be constructed which is of the
style of a single thread of execution and socket per IP address to be
worked with.

State Machines
Network Ferret processors usually had state machine logic built into
them. It was just the nature of auto discovery. For example,
discovering MPLS requires querying multiple tables with a different
path through the tables depending on what is found and not found.
Then all the data has to be analyzed after querying the tables is
completed.

This type of complex logic has been pulled out and generalized into
State Machines with States and SNMP State Machines with SNMP
States.

State machines are logic and NOT a thread of execution.

 Network Ferret™ – Programmer Guide v12.4 5

Vendor Architecture
Even though many standards are defined, vendors tend to either
implement the standards differently or implement things in private
MIBs. Protocols like NetConf and REST are certainly vendor-specific.

Network Ferret provides a file-based architecture where vendor-
specific key/value pairs as well as Java classes can be defined. The
files are related to a given Host based on the SNMP sysOID although
this is not strictly required.

They are called VSP (Vendor Specification) files and can be found in
the config/vendor directory of the distribution. The root VSP is called,
unsurprisingly, root.vsp. There is also an SNMPRoot.vsp.

The CredentialAgent not only determines the valid credential for a Host
(address) but also determines the proper VSP for the Host. Once the
VSP is set, it is possible to load code defined specifically for the
vendor/device type, look at flags defined in the VSP, etc. The
Credential Agent will also test if a host supports GETBULK or not.

Note that GETBULK can be disabled in the VSP files for a given
device. This is because, even though a device may support
GETBULK, some of them behave very strangely and GETBULK must
be disabled.

AtiSystem maintains a global VSP database but an Agent is permitted
to have its own.

Logging
Network Ferret provides both logging and reporting infrastructures.
Agents can each write to their own log or one master agent can start
all of the other agents and they could share the same log.

See defaults.cfg for a few parameters that control how/where logs are
named/created.

File Handling
AtiFile in the utils package provides some methods for dealing with
Java serialized files and other files. It assumes the “report” directory for
files with no path specification.

 Network Ferret™ – Programmer Guide v12.4 6

Network Scanner
V12.3 contains a new package called NetworkScanner. These are
abstract classes which help to create a long-running agent that is
scanning some data on a periodic basic. See the Java doc.

An example of this is an Agent that is scanning switch MAC tables
looking for MACs coming and going.

Network Ferret does not use this package since discovery is a point-in-
time system. It is not long-running.

 Network Ferret™ – Programmer Guide v12.4 7

2: Basic Coding Examples
This chapter gives some basic coding examples. Nothing too complex.
The goal is to give a flavor of what the coding might be like. Note that
there is Java source code for the examples in the distribution.

System
AtiSystem maintains global variables (see previous chapter) to be
shared among Agents within the VM. There is no instance. All methods
are static. See the various sections that have objects here such as
Ping and Credentials.

Agent
The Agent provides the main thread of execution. Even if an
application is a single Agent started from main(), the Agent will have its
own thread of execution.

Below is an example of running the Discovery agent within an
embedding application. In this example, the embedding application
does nothing more than run discovery.

The execute() method simply starts the main Discovery Agent thread
and then waits for it to complete. A more complex embedding
application would start the Discovery Agent asynchronously and then
do something else.

 public static void main (String[] args)
 {
 AtiIPDEmbeddingExample e = new AtiIPDEmbeddingExample();
 e.execute();
 }

 public void execute()
 {
 AtiIPDDiscovery d; // Subclass of AtiAgent

 String rootDir = "c:\\amt"; // Set depending on where you installed
 String configDir = "config";
 String configFile = "home.cfg";

 // Create the discovery instance
 d = new AtiIPDDiscovery();

 Network Ferret™ – Programmer Guide v12.4 8

 // Run discovery. This will not return until discovery is complete.
 // An alternative is to call executeAsynch(); which will return
immediately.
 d.execute(rootDir, configDir, configFile);
 System.out.println("DONE EMBEDDING EXAMPLE");
 }

Subclass Agent
AtiAgent is abstract and MUST be subclassed. See Javadoc for
details.

Here are the main items you need to worry about in your subclass.
Other things are discussed in other sections such as Agent State and
Host.

There are the name() and setName(String name) methods. You can
choose to override the first or call the second.

The run() method is final. You will not override it. Run does the
following:

Parse the config files, open the log files.
Call void logCopyright()

Call boolean preRun() which you may override. If you return false,
executeIt() will NOT be called.

Call executeIt(). This is what you override. The default
implementation does nothing. This method should not return until
the Agent logic is finished.

Call void postRun() which you may override. The default for
postRun() and preRun() is to do nothing.

Closes the logs.

Agent State
AgentState is a subclass of Java ThreadGroup. The Agent thread and
all threads it creates, or its children create, are part of the
ThreadGroup. If your Agent provides an external API to access data in
the Agent, most likely, the threads making those API calls WILL NOT
BE PART OF THE THREAD GROUP. For example, Network Ferret
had to keep some variables as fields in the Discovery object (Agent)
rather than the AgentState so they would be accessible to external
threads making API calls.

 Network Ferret™ – Programmer Guide v12.4 9

The Agent initialization creates the AgentState, assigns itself to the
agent field in AgentState, creates the main thread, attaches it to the
AgentState, and starts the thread which calls run().

Any code can access the AgentState via AgentState.getState().

See the Javadoc for the details of what AgentState has available. Most
things shouldn’t be touched because they are used by the
infrastructure. But there are a few useful things:

• The Agent instance (AgentState.getState().agent)
• The Config instance (AgentState.getState().config())
• Get an SNMP PDU (AgentState.getState().getPdu())
• Get an SNMP Poller (AgentState.getState().getSnmpPoll())
• String cache
• File lock object

The reason for the PDU and Poller is because some clients wanted to
subclass these and add functionality, but they had no ability to modify
the infrastructure to use them.

The File lock object is something special that Network Ferret needed.
Some NF classes load/parse files during class initialization. If multiple
instances of NF were running within one Java VM, this could cause a
problem. Since the Class is initializing, there are no variables available
to use as a lock object. The Agent State provides this object.

You can also add/retrieve private objects to the AgentState using the
privateSet() and privateGet() methods. Or you can subclass
AgentState and add new fields.

Subclass Agent State
Agent State can be subclassed. AtiAgent calls its own method below
which your AtiAgent subclass would override to provide a subclass of
AtiAgentState

 protected AtiAgentState initializeAgentState(String threadGroupName)
 {
 return new AtiAgentState(threadGroupName);
 }

Subclass AtiAgentState because you want to provide other “global
variables” to your application logic. Also, if there are high volume
access parameters in the AtiConfg, you might want to transfer them to
fields in the State to minimize the number of hash table lookups.

 Network Ferret™ – Programmer Guide v12.4 10

Config File Parameters
Config file parameters (Key/value pairs) are parsed and kept in an
AtiConfig object. See the Javadoc for access methods.

The Config object is accessible via:
 AtiConfig.config() or
 AtiAgentState.getState().config()

If two different threads access the Config object and you get two
different Config objects, it means one of your threads is NOT in the
Agent ThreadGroup.

Processors have some special handling of config file parameters. See
that section.

Hosts
AtiHost represents an IP Address that is being interrogated. A Host
maintains credentials for the supported protocols (SNMP, NetConf,
REST), various statistical counters (like send/recv bytes) and a few
other things.

There is an entire credential mechanism for storing, retrieving and
discovering credentials. This is discussed later.

The simple, hardcoded, way to create a host is:

 AtiHost host = new AtiHost("10.10.10.1");

Remember to go through the credential verification process
(CredentialAgent) as this process not only determines a valid
credential but also determines the VSP file for this Host.

A Host does have a discard flag which gives a reason for the discard
which is usually a timeout during a query. See the Javadoc.

The SNMP credential determination process will also retrieve the
sysOID and set the vendor profile (AtiVendorSpecification) for the
Host.

Processors
Processors provide a thread of execution and will be the heart of any
complex Agent.

A number of possible architectures are possible with Processors.

 Network Ferret™ – Programmer Guide v12.4 11

Network Ferret uses processors that handle a large number of Hosts
concurrently in order to scale without using up local OS resources
(threads and sockets).

A smaller scale Agent could use a processor as a thread of execution
for a single Host. So, the Processor would take the Host in and all logic
for the Host would be executed in that Processor thread and, when
finished, the processor would exit. Multiple Processors could be started
to handle multiple Hosts concurrently.

A third possibility is to use no Processors and do all of the work out of
the Agent’s thread of execution.

There are other combinations of processors that are possible.

Processors can be chained together and they have logic for querying
up and down the chain to determine the “progress” of the chain.
Network Ferret uses this logic to provide feedback to the embedding
application as to the progress of auto discovery.

Basic Processor
The most basic Processor is called AtiProcessor. All other Processors
are subclassed off of this. It is an abstract class.

Every Processor will have an AtiQueue and a Thread. Some external
logic will add AtiHosts to the queue which will be pulled off and have
the following methods called which concrete subclasses should
override.

 protected void runIt(AtiHost host)
 {
 if (this.processHost(host)) // give subclass a chance to reject
 this.beginHost(host); // subs MUST call finishedHost()
 else
 this.finishedHost(host);
 }

Use this for the most basic of logic or a basic architecture where
sequential processing is acceptable regardless of how long it may
take.

It is possible to use sequential processing AND create a processor per
Host being processed to create a multitasking effect.

 Network Ferret™ – Programmer Guide v12.4 12

Synchronous Processor
The Synchronous Processor is a multitasking processor that will create
a thread for each host being processed. It is essentially the same
paradigm as using a basic AtiProcessor per Host to be processed.

The difference is that the Synchronous Processor works nicely with a
multitasking architecture that uses other multitasking processors such
as the AtiSNMPTableProcessor. In this case the managing Agent can
easily construct and manage a chain of processors. This is how
Network Ferret handles things like NetConf queries which are
synchronous.

Use the SynchronousProcessor when using any protocol that is going
to block the thread and wait; such as TCP.

AtiSynchronousProcessor manages a list of AtiSynchronousProbes
(the thread of execution for each Host – it actually extends Thread).

Using SynchronousProcessor directly
It is not necessary to subclass SynchronousProcessor. In this case,
use this constructor:

/**
 * Constructor for when you are NOT subclassing this class.
 *
 * @param inAgent
 * @param probeClass The subclass of AtiSynchronousProbe we will instantiate
 * @param maxHosts The maximum number of concurrent hosts to be processed
 */
 public AtiSynchronousProcessor(AtiAgent inAgent, Class<?>probeClass, int maxHosts)

new AtiSynchronousProcessor(myAgent, myProbeClass.class, 0);

Pass in 0 to take the default number of maximum hosts which is 10. A
probe will be created for all Hosts (there is no processHost() to call).

Using a subclass of SynchronousProcessor

The method processHost() should be overridden just like for
AtiProcessor.

This method may be overridden. This defines the maximum number of
concurrent Hosts to be processed.

 protected int maxHosts()

 Network Ferret™ – Programmer Guide v12.4 13

This method must be overridden:

 AtiSynchronousProbe getProbe(ThreadGroup tg, String name);

A typical implementation is like this from the
AtiNetConfCredentialProcessor class.

 public AtiNetConfProbe getProbe(ThreadGroup tg, String name)
 {
 return new AtiNetConfCredentialProbe(tg, name);
 }

Finally, these two methods can be overridden. These are timeouts for
the probes.

 public long connectTimeout() – default is 10,000 ms
 public long workTimeout() – default is 10,000 ms

SynchronousProbe
AtiSynchronousProbe extends Thread. This is a generalization of the
run() method for the Probe:

 public final void run()
 {
 setThreadName(); // Give sub a chance to override
 if (connect())
 doWork();
 cleanup();
 AtiDebug.msg(host.address(), name(), "Done run()");
 }

initialize() is called before the thread is started.

Subclasses MUST implement connect() and doWork(). Cleanup()
does not have to be overridden unless the subclass has something to
cleanup.

There are two flags that subclasses need to set/watch. The
shouldExit flag will be set when shutdown() is called which is usually
called by the kill() method. The connect() and doWork() methods
should monitor this flag and short-circuit execution when it is it set to
true.

The isConnected flag is set to true by the run() method when
connect() returns true. It is up to the subclass to change this to false, if
necessary, during execution.

 Network Ferret™ – Programmer Guide v12.4 14

SynchronousProbe – Timers

SynchronousProbe puts timers on both the connect() and doWork()
calls. It calls the methods connectTimeout() and workTimeout(). The
default behavior is to call the SynchronousProcessor connectTimeout()
and workTimeout() methods.

Either the SynchronousProbe subclass or the SynchronousProcessor
subclass can override these methods. The default timeout for both is
10 seconds. A return value of <=0 means no timer is set and it is up to
your code to deal with it.

Override the processor-level methods if timeouts are the same for all
probes. Override the probe-level methods if, for some reason, timeouts
can be different per probe.

SNMPTableProcessor
This processor provides a single thread of execution and a single
SNMP socket to be shared by multiple instances of
AtiSNMPTableWalker (logic). Network Ferret uses these so it can
scale massively.

There are three flavors of SNMPTableProcessor. A processor that runs
state machines, a processor that runs the same class of
SNMPTableWalker and a processor that runs different classes of
Walkers/StateMachines based on a tag found in the vendor VSP files.
Network Ferret uses them all. Here is a code snippet that starts two
types of SNMPTableProcessor plus other types of AtiProcessor.
Exception handling has been removed for ease of reading.

 // Create the processor instance

 // Class is a Walker class
 if (processorClass.getSuperclass() == AtiIPDSNMPTableWalker.class ||
 processorClass.getSuperclass() == AtiIPDSNMPTableWalkerCS.class)
 {
 p = new AtiSNMPTableProcessor(this, processorClass);
 }
 else if (className.endsWith("StateMachine")) {
 // The class is the class that creates the state machines. We create
 // one instance and pass it in to an SnmpTableProcessor.
 Object smf=null;
 smf = processorClass.newInstance();
 // Assume class's StateMachine factory method is getStateMachine()
 p = new AtiSNMPTableProcessor(this, smf, "getStateMachine");
 }

 Network Ferret™ – Programmer Guide v12.4 15

 else { // Some kind of AtiProcessor that is not an SNMPTableProcessor
 Constructor<?> cArray[] = processorClass.getConstructors();
 Constructor<?> c = cArray[0]; // there will only be 1
 Object args[] = new Object[1];
 args[0] = this;
 p = (AtiProcessor) c.newInstance(args);
 {

 Network Ferret™ – Programmer Guide v12.4 16

3: Types of Systems
See the FullAgent example source code shipped with the product.
This gives lots of comments and various options for starting the
system.

Multi-agent system
Suppose you are running in some execution environment and you
have multiple Agents doing various things at various times. In this
case it would be best to have global instances of the Ping, Credential
and MIBDump Agents as well as a global instance of the Vendor
Specification database (the CredentialAgent loads this).

Mare sure the System starts these Agents independent of another
agent. Otherwise, that agent will own them.

Things To Be Aware Of
Log Files – Because all of these agents are in their own
ThreadGroups, they MUST have different log file names. As long as no
names are specified in the config files, all is OK because each agent
will default to using its own log file names.

Threads Of Execution – Because all of these agents are in their own
ThreadGroup, they all have their own AgentState. The Ping, Credential
and MIBDump agents all have the ability to do a callback to provide a
result. KEEP IN MIND, that your callback method is being executed by
that Agent’s thread and WILL NOT HAVE ACCESS TO YOUR
THREADGROUP. Therefore, the callback method cannot do anything
that involves accessing the AgentState. This includes log messages.
For example, if you receive a callback from the Ping agent and log the
ping result in the callback, it will end up in the Ping Agent’s log.

Network Ferret was written assuming that these Agents are in their
own ThreadGroup. For example, Network Ferret does a lot of work
with a ping result so when it gets the callback from the PingAgent, all
the callback method does is queue the response so Network Ferret’s
thread can do the processing.

 Network Ferret™ – Programmer Guide v12.4 17

 Single-agent system
A single Agent system is much easier to code than a multi-agent
system. In a single Agent system, all Agents share the same
AgentState. There is no issue with log files or threads of
execution/AgentState as with the multi-Agent model.

Discovery, for example, will start all of the System agents if they are
not already running. All messages from all agents do to the discovery
log and not to individual agent logs.

 “Lazy” multi-agent system
All Agents could be coded to start their own private copies of Ping,
Credential, etc. Your Agent goes not care if it is in a multi-agent system
but resources are not used as best as they could be. Credentials may
be checked multiple times. Multiple raw ICMP sockets may be opened.

There currently is a potential problem with doing this. An instance
of CredentialAgent loads the VendorSpecification database globally.
See the next section.

Vendor Specifications
Vendor Specifications are essentially constants so loading them
globally is OK regardless of the type of system being implemented.

The Credential Agent will load the global vendor database.

Vendor Specifications can be local to the Agent but the only reason to
do this is if there are entirely different sets of VSP files for some Agent.
LIMITATION: An Agent cannot have a private CredentialAgent AND a
set of VSP different from the global set.

 Network Ferret™ – Programmer Guide v12.4 18

4: Pinging
NMSCore provides an ICMP mechanism. Java provides a mechanism
using InetAddress.isReachable() but this has several problems. First,
there is no guarantee that the VM you are using will actually do a ping.
Second, doing a ping requires a raw socket which requires admin
privileges on some OSes. This means the entire VM must run with
privileges which is risky.

NMSCore uses native Java code to use real ICMP packets and
provides detailed results such as Host Unreachable, Network
Unreachable, Administratively Prohibited, etc. For Unix systems, NF
provides a small external executable that does the pinging. Only this
executable requires privileges.

NMSCore’s ICMP logic also deals with slowing down pinging if Source
Quench returns come from routers out in the network.

NMSCore’s ping mechanism also provides for the option to use a TCP
port either after regular pings have failed or in place of regular pings.

PingAgent
There probably should only be a single PingAgent in a VM but it is not
required. AtiSystem holds on to an instance of PingAgent. Access it
using AtiSystem.pingAgent();

Starting The PingAgent & Config Parameters
AtiSystem holds on to an instance of AtiPingAgent. How the instance
gets there and what config parameters it uses depends on who starts it
and how it is started.

See ping.cfg for parameters that the PingAgent uses.

Independent PingAgent with default parameters and stdout logging

Simply asking for the instance, pingAgent(), will create one if it does
not exist.

 Network Ferret™ – Programmer Guide v12.4 19

public static void main (String[] args)
{
 // Start outside of any Agent thread group.
 AtiSystem.pingAgent();

// rest of main code that starts an Agent(s)
}

Independent PingAgent with its own configuration

Ask for the agent, the first time, and include the standard config
directory/file parameters for an Agent.

public static void main (String[] args)
{
 // Start outside of any Agent thread group.
 AtiSystem.pingAgent("c:\\amt_12", "config", "ping.cfg");

// rest of main code that starts an Agent(s)
}

PingAgent started by another Agent – inherit AgentState & Config

If you know your Agent will be the only one creating the PingAgent,
then the exists() check is not necessary. But if running in an unknown
system, and some other Agent may have created the PingAgent, the
exists() check should be done.

The PingAgent will write to the logs of whatever Agent starts it.

if (!AtiSystem.pingAgentExist()) {
 AtiIPDDebug.msg(name, "Starting Ping Agent...");
 AtiSystem.pingAgentSet(AtiPingAgent.start(this));
}

Synchronous Ping
AtiIPAddress ip = new AtiIPAddress("192.168.1.254");

// Synchronous ping
AtiPingRequest req = AtiSystem.pingAgent().ping(ip, null);
AtiPingResult res = req.result;
AtiIPDDebug.msg(ip.toString(), "TestPing", "Ping result code: " +

res.getCode());

 Network Ferret™ – Programmer Guide v12.4 20

Asynchronous Ping
AtiIPAddress ip = new AtiIPAddress("192.168.1.254");
AtiSystem.pingAgent().ping(ip, this); // Asynchronous ping
// Code continues to execute here

 // Callback method (implements AtiPingResultCallback interface)
public void pingReponse(AtiPingRequest request, AtiPingResult response)
{
AtiIPDDebug.msg(new AtiIPAddress(response.getRespondHost()).toString(),

"TestAgent", "Callback - Ping result code: " +
 response.getCode() + " id: " + response.getId());

}

Note that the PingAgent’s thread is executing the callback method so
any log messages will end up in the PingAgent’s log which may be
different from the caller’s log.

An AtiQueue instance can also be provided in place of a callback
method. In this case the ping result will be placed directly in the
queue.

Stopping The PingAgent
Any AtiAgent can be directly stopped with stopNow(). However, since
AtiSystem is probably holding on to this instance, it is better to call:

AtiSystem.pingAgentStopIfIAmMaster(AtiAgent master, boolean stopIfNoMaster)

If the PingAgent has a master agent and it matches the Agent passed
in, the PingAgent will be stopped. Pass in TRUE for stopIfNoMaster to
stop a PingAgent that was started with no master.

Passing in a master and TRUE will stop the PingAgent unless it was
started by some other Agent.

 Network Ferret™ – Programmer Guide v12.4 21

5: Credentials

Providing/Receiving Security Information
Credential handling (SNMP, VMWare, NetConf and REST) is part of
the core infrastructure since multiple agents would want to share a
valid credential rather than rediscovering the same valid credential.

The starting of the Credential Agent is discussed elsewhere. This
chapter will only discuss the interface.

Note that the credential agent can be used by many agents. However,
some code should be responsible for maintaining the credential
interface which provides the Credential Agent with KNOWN credentials
and stores new credentials that the Credential Agent discovers.

Possible Security Information
It is documented in credentialAgent.cfg how to provide Network Ferret
with a list of all possible security credentials for a given protocol.

When the Credential Agent needs to determine the credentials for a
given IP address/protocol, it will first ask the credential interface for
known credentials (see below) and then try the possible credentials.

This makes things easy on the administrator who does not need to
know the specific security information for each IP address. The
negative effect of this mechanism is that discovery runs a bit slower
while the Credential Agent takes time to figure out which credential to
use. Also, a large number of errors can be generated to existing
management systems as various credentials are tried for each IP
address.

With version 12.4, a method was added to CredentialInterface to allow
the interface to provide possible SNMP credentials instead of using
config files.

Credential Interface
The Credential Interface is responsible for providing known credentials
to the Credential Agent AND for storing new credentials that the
Credential Agent discovers.

 Network Ferret™ – Programmer Guide v12.4 22

Known credentials will be tried first before any possible credentials
(see above).

Some code needs to implement
com.logikos.core.credentials.AtiCredentialInterface.

public class myClass extends Object implements AtiCredentialInterface

The methods are as follows (See JavaDoc for details):

public boolean initialize();
public void addSNMPCredential(String address, AtiSNMPCredential snmpCredential);
public AtiSNMPCredential getSNMPCredential(String address, int version);
public void getSNMPPossibleCredentials(see Javadoc for parameters);
public void addNetConfCredential(String address, AtiNetConfCredential netconfCredential);
public AtiNetConfCredential getNetConfCredential(String address, int version);
public void addRestCredential(String address, AtiRestCredential restCredential);
public AtiRestCredential getRestCredential(String address, int version);
public void addVMWareCredential(String address, AtiVMWareCredential vmwareCredential);
public AtiVMWareCredential getVMWareCredential(String address, int version);
public void save();

The add…() methods are called when a credential is successful. For
SNMP, the method could be called multiple times in a given discovery
for a given address; once for each version of SNMP supported by the
address. The Credential Agent calls this method even if the credential
was initially obtained from the interface.

Use a version of 110 or 111 for NetConf credentials.

Use a version of 99 for VMWare credentials.

Use a version of 0 for REST credentials.

The save() method is called when the Credential Agent exits.

To register the interface you need to do the following:

AtiSystem.credentialInterfaceSet(yourInstanceOfTheInterface);

Default Credential Interface
AtiSystem will use a default credential interface if none is set and
someone tries to save a credential. The default will create a file in the
config directory called cdb.dat. This file is protected by AES256
encryption and can only be read on the machine on which it was
created. We have no way of debugging problems with this file.

 Network Ferret™ – Programmer Guide v12.4 23

SNMP Credential Logic
For SNMP, the Credential Agent will follow the following logic:

1 – Ask the Credential Interface for a “preferred credential”. This could
be any version. If a credential is returned, it will be tried.

2 – Ask the Credential Interface for a known credential for version 3.

3 – Try the possible credentials for v3.

4 – Repeat 2&3 for versions 2 and 1.

Only versions that are enabled via a config parameter will be tried.
There are other config parameters which also control exactly how the
credentials are queried.

Why a preferred credential? This is more efficient. Suppose all
versions are enabled and IP address X has a known v2 credential. The
Credential Interface could return this rather than the Credential Agent
trying the possible v3 credentials before asking for the v2.

 Network Ferret™ – Programmer Guide v12.4 24

6: Logging/Debugging

Logging
The com.logikos.core.message package provides a simple logging
mechanism. Errors, Warnings and Debug messages. We should have
called Debug messages Info messages, but there is too much code to
change.

See the Network Ferret chapter below on Handling Discovery Output
for more detail about the logging message callbacks.

Also, see the Network Ferret chapter on Localization.

Debugging
There are times when much more detail is required. Network Ferret
v11 and earlier used to have a global “debug” flag but it created
gigabyte logs because every part of the system was dumping detailed
messages to the log. With v12 we have tried to make things a little
more granular.

Agent/Processor Debug
AtiAgent has a public variable called “debug”. Yes, it should be in the
AtiAgentState but there was so much legacy code directly referencing
it, that we decided to keep it. There are also methods to reference the
flag. Code can also use AtiAgentState.getState().agent().debug(); You
can see why there is much code directly referencing the variable.
There are many, many debug checks in Network Ferret and we were
concerned about making so many needless method calls.

There is an undocumented config parameter called DEBUGIT, which
we are documenting here ������. The AtiAgent class checks for it after
parsing the agent config file and before preRun() is called. You can set
this in defaults.cfg to turn on debugging for everything.

DEBUGIT can only be TRUE. In other words, if you manually set an
agent debug flag at creation time, a false DEBUGIT value will NOT
override this.

An AtiProcessor can have a local debug flag. If set, it will override the
agent debug flag. If not set, the debug() method in AtiProcessor will
return the agent debug flag.

 Network Ferret™ – Programmer Guide v12.4 25

SNMP Debug
SNMP is a huge amount of Network Ferret work so it has its own
debug flag. We did not want to clog the log with SNMP messages if
you only want to debug your agent/processor logic.
SNMP debug messages will go to stdOut.

The AtiAgentState maintains a debugSNMP flag. There is no config
parameter to set this. Set this via code or your own agent’s config
parameter.

AtiSNMPTableProcessor, AtiSNMPTableWalker and AtiSNMPPoll all
look for this at creation/start. Each of these classes has a debug flag
which can be manually set. This allows you to be very specific about
what code puts out debugging messages.

Java Memory Dumps
AtiSystem has a public variable called “debugMemory”. Some piece of
code must set this to true. Various places in Network Ferret call the
method AtiSystem.debugMemoryCheck(“tag”). If debugMemory is
false, nothing happens. If debugMemory is true, the calling thread will
sleep for AtiSystem.debugMemoryPause milliseconds. The default is
20 seconds (20,000). This gives a programmer a chance to do a
memory dump of the system.

For Network Ferret, we would generally do this after discovery was
complete so we could see if we were hanging on to any objects we
thought should be garbage collected.

 Network Ferret™ – Programmer Guide v12.4 26

7: Protocols
NMSCore has packages for SNMP, REST and NetConf. There is
Javadoc for all of this.

The examples source code has a “protocols” package which shows
how to use the various protocols. While NMSCore provides a great
deal of support for high-level SNMP logic, you are certainly able to use
the low level SNMP and “roll your own”.

Note that the vijava jar file is included in the distribution. Network
Ferret uses this to discover VMWare systems. The CredentialAgent
handles VMWare credential discovery. But there is no other
infrastructure. You are free to use the jar API as you wish.

SNMP and Buffers

When working with SNMP, there are some buffer issues that need to
be watched.

High Volume

If dealing with high volume, you must be concerned about overrunning
the OS socket receive buffer. If this happens, packets will be silently
dropped and they will appear as SNMP timeouts. This can be rectified
by utilizing buffered SNMP. High volume will only occur when using an
AtiSNMPTableProcessor which is handling many hosts at the same
time.

Prior to v12, Network Ferret permitted the resizing of OS socket buffers
but this was cumbersome. Setting buffered SNMP creates a separate
read thread. All it does is read the OS socket and store PDUs for future
reading.

AtiAgentState has a variable called useBufferedSNMP. This must be
set by your code.

Since an individual SNMPTableWalker cannot overrun the buffer, by
default, an SNMPTableWalker that is NOT part of an

 Network Ferret™ – Programmer Guide v12.4 27

SNMPTableProcessor will create a non-buffered SNMPPoll regardless
of the value set in the AgentState.

GETBULK

If using GETBULK, there is the issue of the Java receive buffer on the
UDP socket. Not the OS socket buffer.

The default buffer size is 3,000 bytes. This should be fine for most
GET requests. We have seen cases where something like a VLAN
membership variable is gigantic because the switch happens to have
thousands of ports.

GETBULK requests can be very large depending on the number of
variables, the size of the response and the number of rows requested.

If NOT using buffered SNMP, the same Java buffer is used for every
receive so it doesn’t’ really matter how big you make this buffer. If
using buffer SNMP, then a buffer is created per receive. In this case
you want to be mindful of memory usage and try to size the buffer
according to the size of your requests.

Both the SNMPPoll object and the UDPSocket object permit the auto-
adjusting of the buffer size if a large packet is received. Currently,
NMSCore has the SNMPPoll object adjust the buffer size.

If you browse the discovery.cfg file you will see a section where
Network Ferret is pre-sizing processor socket buffers based on
experience over the years.

There is a tradeoff between minimizing SNMP requests to a device
(asking for large number of rows in GETBULK) and the amount of work
the machines have to do recombining the fractured UDP packets.
Remember that a UDP packet can hold, usually, a max of a few
hundred bytes of data.

There is also the inefficiency of asking for a large number of rows from
a device when the table does not exist (or is empty). In this case a
large amount of useless data is being sent back. The SNMP
infrastructure does permit you, without changing your code logic, to do
a large GETBULK but, first, do a single test query to make sure there
is something there to get.

 Network Ferret™ – Programmer Guide v12.4 28

NetConf/REST
These are synchronous protocols. NMSCore has support for these
protocols. A Processor subclassed off of AtiSynchronousProcessor. A
Probe which is the synchronous thread of execution.

These protocols are inherently vendor-specific so you will be using the
VSP files to define code to load for a given Host/Probe.

There are also cases where you have a mostly SNMP application but
there is this one device that requires NetConf for one specific query.
SNMPTableWalker has infrastructure to allow you to execute non-
SNMP code which is usually executing one of these protocols.

There is support for reading NetConf and REST results from files. This
is mostly for debugging. A client site has a problem. NMSCore has
logic to allow you to write a result to a file. The client sends you the file.
You have the ability to read that file and use the data as if it came from
the device.

See the “protocols” package in the example code to see how to use
these protocols.

 Network Ferret™ – Programmer Guide v12.4 29

8: Utilities
There are various utility classes which may be of use.

CacheMember
This is in the utils package. AtiSystem has int and String caches. There
is much duplicative data in network management. SNMP has its own
internal cache which saves the creation/destruction of millions and
millions of objects in the course of a large discovery.

Converter
This is in the utils package. Yes, a strange name. A class that provides
various methods for IP addresses (this class existed long before
AtiIPAddress), byte array to string conversion, etc.

DNSLookup
This is in the utils package. Provide filters to skip certain lookups and
timeout options. A poorly implemented DNS can severely slow down
your application.

File
Methods for opening/closing files (text and Java serialization) using the
Report directory as defined in the config files.

IFFilter
This is in the Vendor package. This class provides a matching
mechanism for interfaces based on various attributes of an interface.
The filters that Network Ferret uses are defined in the VSP files but this
is not required. Network Ferret uses these filters to exclude certain
interfaces during discovery.

IPAddress
This is in the Core package.

Queue
This is in the utils package. Network Ferret is 25+ years old. We had to
create a Queue class back then.

 Network Ferret™ – Programmer Guide v12.4 30

Reflection
This is in the utils package. We exposed two methods that the State
Machine classes use to find execution methods in other classes.

 Network Ferret™ – Programmer Guide v12.4 31

9: Getting Started With
Network Ferret

The previous chapters described the NMSCore architecture that is
available to you and which Network Ferret itself uses.

This chapter describes the architecture of Network Ferret which is an
Agent that runs within the core described above.

Before Writing Any Code
Before you write any Java code for Network Ferret you should:

• Thoroughly read the User Guide and Domain Model Guide.
• Run Network Ferret enough times on its own that you

understand the various configuration parameters and
understand the output.

• See the Java source examples which show how to embed
Network Ferret.

• Read the remaining chapters if you intend to customize Network
Ferret and add discovery functionality.

After doing these things, you can begin writing custom extensions to
Network Ferret.

If you have no intention of writing extension, then you do not need to
read these chapters at this time. The User Guide and Domain Model
Guide will be sufficient.

Network Ferret Architecture
Network Ferret is built on the NMSCore. It is a set of Java code which
takes its input from a text-based configuration file and produces a
stream of discovery output in the form of Java objects called
FactoryShipments. The FactoryShipments go to three optional places:
the embedding application, CSV files and Network Ferret’s topology
database.

Network Ferret is IP-based but it is not completely SNMP-based
(NetConf, REST and VMWare API are also used). IP Addresses
(called Hosts) are discovered via ICMP ping. Hosts are then subjected
to basic discovery. Basic discovery (node inventory) concerns itself

 Network Ferret™ – Programmer Guide v12.4 32

with uncovering information pertaining to a single physical node (which
can contain many IP Addresses). Once a Host is finished with basic
discovery, it is then passed on to any number of advanced discoveries.
Advanced discoveries concern themselves with uncovering information
pertaining to connectivity between nodes. Examples of advanced
discoveries are layer-2 connectivity and layer-3 connectivity.

IP Address
discovered

via Ping

Basic Node
Discovery

L2 Connectivity
L3 Connectivity
ATM Connectivity
Custom Connectivities

Network Ferret is heavily threaded. It makes use of the
AtiSNMPTableProcessor. Basic discovery is a collection of threads
and queues where each thread is responsible for a specific set of data.
Each advanced discovery runs in its own thread and is fed from basic
discovery by its own queue. All of this threading and queuing prevents
bottlenecks. Each of the advanced discoveries is also implemented as
a series of threads and queues.

The threading of basic discovery is shown below.

Ping Processor - finds IP addresses.

Initial SNMP Processor - determines if an address does SNMP.

Processors that query things like IP Addresses, Interfaces, ARP caches, bridge ports, etc.

Vendor Processor - queries non-standard MIBs mostly for hardware information.

Custom processors - used to query anything you like using any protocol you like. Some
Ferret processors (VC, VLAN, Port scanning) are actually done as custom processors.

Default Processor - Node is built. The Factory Shipment is passed out and the Node is
passed on to the Connectivity Discoveries.

Host
object
being

passed
via

queues

One could ask the question: why not have many threads where each
thread does all of the querying for a single node rather than have a
thread query all nodes for a specific piece of information.

This is an interesting design question. Both methods were looked at
and the threading described above better fit the requirements. Even
today (2024), creating 10,000 threads and sockets is not really a good
thing.

Using this architecture, Network Ferret is able to discover about 30,000
switches and routers (just the node inventory) in about 60 minutes.

 Network Ferret™ – Programmer Guide v12.4 33

About 350 per minute. This was an actual discovery, not just a
calculation based on a smaller discovery.

NMSCore permits both architectures.

Wire Model
Network Ferret has an internal data structure called the Wire Model.
This models connectivity between nodes. Any logic that does
advanced discovery (connectivity between nodes) would need to
understand how the Wire Model works. It is complex and will not be
discussed here until the day comes when a client has a practical
application they want to do.

Customization Options
Note from the diagrams above that there are two main locations where
customizations can occur. You can add custom information to a basic
node or you can create a custom advanced discovery.

Customizations are not bound to use SNMP or even IP although you
will only be told a node exists if it responds to ICMP pings or SNMP.

Customizations are not bound to the domain model as defined in the
Network Ferret Domain Model Guide. Customizations are free to add
to existing objects or define new ones. The ability to create new
objects depends on the embedding program’s ability to handle arbitrary
data.

Because customizations can add new things to a FactoryShipment, a
discreet list of “types” cannot be defined for a FactoryShipment.

Customizing basic discovery
Create custom basic discovery logic when you want to add information
to a Node that is not discovered by the existing basic discovery
processors.

Suppose you wanted to model Oracle databases. You could write a
custom processor that hits the well-known TNS Listener port and then
discovered all of the database instances, tables, users, etc. defined to
Oracle on that Node.

Suppose you did not like the way Network Ferret did IP port scanning.
You could disable that processor and replace it with your own.

 Network Ferret™ – Programmer Guide v12.4 34

Customizing advanced discovery
Create custom advanced discovery logic when you want to do
something after a Node has been completely discovered. Advanced
discovery logic typically involves discovering relationships between
nodes such as layer 2 connectivity or layer 3 connectivity.

You can create an advanced discovery to model MPLS paths through
a network or perhaps discover connectivity in a TDM multiplexor
network.

Modeling connectivity is complex (see Wire Model above).

Customizing vendor-specific information
In the world of SNMP there are standard MIBs defined that contain
important discovery information but not all vendors follow the
standards usually because they created their MIBs before the
standards were defined and they have not bothered to change them.

In cases like this it is necessary to have logic for each device that does
not follow the standard.

Network Ferret provides a framework for implementing vendor-specific
support. Existing Network Ferret processors (hardware, VLANs, layer
2, layer 3 and ATM) all use the vendor framework. You are free to add
support in these processors for devices Network Ferret does not
already support or use the framework in your own customization.

If creating files for a new vendor or modifying an existing vendor, use
files with the suffix “vspx”. This way, when a new release some out,
you can easily se the changes you have made.

 Network Ferret™ – Programmer Guide v12.4 35

10: Embedding the
Discovery Engine

This chapter describes how a programmer would embed Network
Ferret in their own application. This chapter assumes a solid
understanding of Java.

Environmental issues
Platforms and JREs

Network Ferret has been tested with various JREs. You are free to try
any JRE although success cannot be guaranteed. Network Ferret does
not have any GUI components and does not use any advanced
features in Java so there is a very good chance that Network Ferret will
run fine in another JRE. The most complicated things Network Ferret
does with the environment are to call a few native methods for ICMP
and, dynamically load classes and use reflection.

Network Ferret has been tested on Windows 10&11 and RedHat Linux
on Intel. We no longer support Solaris (do you youngsters even know
what that is!!). It will probably run fine on other platforms given the fact
that it was written in Java. Again, success cannot be guaranteed.
There is some platform-specific code that would have to be modified.
There is a small amount of C code which does the ICMP pings. If you
are interested in running Network Ferret on another platform, contact
us and we can discuss providing you the ICMP source code.

One client ported the ICMP code to Apple Mac and gave us the binary.
It is included in the distribution.

Java Native Image
Technology exists to “compile” a Java application so no VM is
required. This technology is difficult to use with native code, dynamic
class loading, serialization and reflection. All of which Network Ferret
uses.

We have no desire to try and make this work. Write us a giant check
and we’ll see.

 Network Ferret™ – Programmer Guide v12.4 36

We can understand the desire for a native image if writing a small
service that will be activated hundreds of times a second on some
server. Discovery is a heavy process that runs for a relatively long
period of time. The efficiencies gained from the compiled image seem
not so important to us.

Third Party Jars
The AMT/java/ext directory contains a number of jars that need to be in
your classpath. See amtroot.cmd to see how we set this up for running
standalone.

Working with the configuration files
The format of the configuration files and the definition of each
parameter are defined in the various .cfg files in the config directory.

It is your design option to expose or not expose these files to your
users. Even a combination of both is feasible. You could create a GUI
for novice users which only exposes a few key parameters and provide
an advanced option for expert users that either exposes all parameters
in a GUI or simply points them to the file and their favorite editor.

Running discovery programmatically
Running from within a Java program

See the com.logikos.discovery.examples package in the src directory
for an example that shows how to embed Network Ferret.

To run Network Ferret from within your own Java program you will
need to do the following:

Set up the CLASSPATH
Make sure discovery.jar and nmscore.jar is in your classpath.

Look at the discovery command file in the bin directory for an example
of setting up the classpath. Also, you should note the parameters that
are passed to the VM. These are the parameters that Network Ferret
has been tested with. If you choose to modify these parameters for
your own application or use others, please be aware that these may
have an effect on Network Ferret.

An important note about using Properties. The NF code will contain
the same defaults as found in shipped config files so you do not have
to supply these parameters unless you are changing the default. You,

 Network Ferret™ – Programmer Guide v12.4 37

in fact, should remove them so that future changes to defaults does not
require you to change your code.

Running as a standalone process
Running Network Ferret as a standalone process is simply a matter of
following the example in the discovery command file in the bin
directory. It shows the executable to start and the parameters that
need to be passed.

Note that there are two types of parameters. There are parameters to
the java VM and parameters to Network Ferret itself. The parameters
to the Java VM are all of the parameters that appear up to and
including com.logikos.discovery.core.AtiIPDDiscovery on the command
line. The parameters after the class name are passed on to Network
Ferret’s main() as arguments.

Handling discovery output
This section discusses handling discovery output if you are running
Network Ferret from within your own Java application. If you are
running Network Ferret as a standalone process, then the output will
appear in the report directory as CSV files.

Registering with Network Ferret
Your application must implement the Java Interface called
AtiIPDExternalInterface in order to receive any information from
Network Ferret. This interface extends the NMSCore interface
AtiLoggingInterface.

public class myClass extends Object implements AtiIPDExternalInterface

and implement the following methods:

public String getName();
public void basicDiscoveryComplete(HashMap stats);
public void discoveryComplete(boolean abnormalTermination);
public void shipment(AtiFactoryShipment aShipment);
public void pingSpecStarted(AtiIPDPingSpec spec);
public void pingSpecCompleted(AtiIPDPingSpec spec, String why);
public void debugMessage(String address, String message);
public void errorMessage(String address, String message, Exception
exception);
public void progressMessage(String address, String message);

getName() simply returns a String which Network Ferret uses as a tag
in the log. The other methods are described later.

 Network Ferret™ – Programmer Guide v12.4 38

To register the interface you need to do the following:

AtiIPDDiscovery d = new AtiIPDDiscovery();
d.registerExternalInterface(yourInstanceOfTheInterface);

You should register your interface before you call the execute()
method. Otherwise, you may miss some messages. It is acceptable to
not register an interface. If you don’t, discovery will still run and the
logs and reports will be created but your program will not receive any
callbacks.

Receiving progress and debug messages
The progressMessage() and debugMessage() methods will be called
when Network Ferret generates a progress or debug message for the
log (the message will still be written to the log).

There is no return value. You are free to do anything you like with the
parameters including nothing. By the time your method is called, the
message has already been written to the log. Network Ferret will make
no use of the message after your method is called.

Note that the message parameter in the progress method contains the
localized version of the message. The message written to the log will
be in English. Also, the message parameter will only contain the
message whereas the log will contain other information such as the
timestamp, function involved, address, etc.

The basicDiscoveryComplete(Hashtable stats) method will be called
after basic discovery has completed. You don’t necessarily have to do
anything with this method. If no advanced extensions are configured to
run or if this is a very small network, the discoveryComplete() method
will be called shortly after this one. The stats Hashtable contains
various bits of information about skipped subnets, addresses, timeouts,
etc.

The discoveryComplete(boolean abnormalTermination) method will be
called after discovery has completed and cleaned up all of its threads.
You don’t necessarily have to do anything with this method as your call
to execute() will also return when discovery has completed. You can
use either discoveryComplete() or the return of execute() as a signal to
do your own cleanup.

Receiving error messages
The errorMessage(String address, String message, Exception
exception) method will be called when Network Ferret generates an
error message for the log (the message will still be written to the log).

 Network Ferret™ – Programmer Guide v12.4 39

There is no return value. You are free to do anything you like with the
String including nothing. By the time your method is called, the
message has already been written to the log. Network Ferret will make
no use of the message after your method is called.

Note that the message parameter in this method contains the localized
version of the message. The message written to the log will be in
English. Also, the message parameter will only contain the message
whereas the log will contain other information such as the timestamp,
function involved, address, etc. Not all error messages have been
localized. A non-localized error message will begin with INT: . The INT
stands for Internal.

Most times exception will be NULL. Exception will only have a value
when a Java exception generated the error. Network Ferret uses the
exception to generate its exceptions.txt file.

Address parameters in messages
The address parameter in the debug(), progress() and error() methods
should NEVER be NULL. Address may have the value of “noAddr”.

Receiving domain information
Network Ferret produces output using an object called an
AtiFactoryShipment. This section will only describe accessing the
shipment. For information on the contents of a shipment, see the
Network Ferret Domain Model document, especially the chapter
regarding Abstract Data Output.

Network Ferret does not provide its own Java domain model (i.e. class
implementations) for discovery data. This is because each application
has different needs for the discovery data and therefore trying to create
one domain model to suit all applications is virtually impossible.

 Network Ferret™ – Programmer Guide v12.4 40

Below is a diagram which shows the layout of an AtiFactoryShipment.
NOTE: Hashtable has been replaced with ConcurrentHashMap
and Vector has been replaced with ArrayList.

AtiFactoryShipment

String type;
String node;
Hashtable entityOrders;
Hashtable relateOrders;

entityOrders by Class

key=Class; value=Hashtable

Node Hashtable
Interface Hashtable
Port Hashtable

public Hashtable entityOrders()

entityOrders for a Class

key=name; value=AtiEntityOrder

1 AtiEntityOrder
2 AtiEntityOrder
3 AtiEntityOrder

normal Hashtable access

AtiEntityOrder

String name;
String orderClass;
Hashtable attributes;
Hashtable relationships;

normal Hashtable access

attributes for an AtiEntityOrder

key=attributeName; value=String

name 2
snmpIndex 2
type ethernet
speed 10000000

public Hashtable attributes()

public String name()
public String orderClass()

public String type() or getType()
public String node() or getNode()

Return values for type
and node are defined
in the Network Ferret
Domain Model
document in the
Abstract Data chapter.

relateOrders by Class

key=Class; value=Vector

contains Vector
access Vector
inteface Vector

public Hashtable relateOrders()

relateOrders for a relate class

Each element of the vector is an
instance of AtiRelationshipOrder

element 0 - AtiRelationshipOrder
element 1 - AtiRelationshipOrder

normal Hashtable access

AtiRelationshipOrder

String orderClass;
AtiEntityOrder parent;
AtiEntityOrder child;

normal Vector access

public String orderClass()
public AtiEntityOrder parent()
public AtiEntityOrder child()

Return all relationships
for the entire shipment.

Returns a Hashtable just like the
relateOrders() method for
AtiFactoryShipment. The difference is
that this Hashtable only contains
relationships for this entity. Note that
both the parent and child entities will
hold on to the same
AtiRelationshipOrder instance.

public Hashtable relationships()

 Network Ferret™ – Programmer Guide v12.4 41

See the javadoc for a complete listing of methods available.

All of the entity type names, relationship type names and attribute
names are defined by constants in the Interface
com.logikos.discovery.factory.AtiFactoryNames. The source is
included in the java/src directory.

 Network Ferret™ – Programmer Guide v12.4 42

The method below gives an example of accessing a shipment. This
method uses a few methods that are not included in the diagram
above. These are a few convenience methods that take a little of the
pain away from the Hashtable manipulation. This is the actual method
used to write the raw.csv file in the reports directory.

 public void writeRawDump(BufferedWriter file, AtiFactoryShipment shipment)
 {
 if (null == file)
 return;
 // Write out the entity orders
 // Iterate through the Hashtable for each class
 for (Enumeration e = shipment.entityClasses(); e.hasMoreElements();) {
 String eClass = (String)e.nextElement();
 Hashtable eOrders = shipment.entityOrders(eClass);
 for (Enumeration k = eOrders.keys(); k.hasMoreElements();) {
 String id = (String)k.nextElement();
 AtiEntityOrder eOrder = (AtiEntityOrder)eOrders.get(id);
 // toString() for Hashtable provides a nicely formatted String.
 // No need to iterate through the attributes ourselves.
 String attrs = "" + eOrder.attributes();
 attrs = attrs.replace(',', ' '); // commas will screw up the CSV file

 try {
 file.write(shipment.node() + "," + eClass + "," + id + "," + attrs);
 file.newLine();
 } catch (Exception ex) {;}
 }
 }

 // Write out the relate orders
 // Iterate through the Vector for each class
 for (Enumeration r = shipment.relateClasses(); r.hasMoreElements();) {
 String rClass = (String)r.nextElement();
 Vector rOrders = shipment.relateOrders(rClass);
 for (int index = 0; index < rOrders.size(); index++) {
 AtiRelationshipOrder rOrder =
(AtiRelationshipOrder)rOrders.elementAt(index);

 try {
 file.write(shipment.node() + ",Z-" + rClass + "," +
 rOrder.parent().orderClass() + "," + rOrder.parent().name() +
"," +
 rOrder.child().orderClass() + "," + rOrder.child().name()
);
 file.newLine();
 } catch (Exception ex) {;}
 }
 }
 }

Error handling
Network Ferret wraps the calls to your methods in a general exception
handler. If your code does generate an exception, an error message
will be written to the Network Ferret log.

Note that an exception in errorMessage() will not produce another error
message. This runs the risk of creating an endless loop. An exception
in errorMessage will produce a debug message to the log.

 Network Ferret™ – Programmer Guide v12.4 43

Controlling a running discovery
This section discusses controlling Network Ferret if you are running
Network Ferret from within your own Java application.

Note that we do not know of anyone who has actually used this
feature.

Pausing discovery
Network Ferret is paused by sending the pause() message to the
instance of AtiIPDDiscovery.

The pause method will return immediately. Network Ferret is
composed of many threads and each will pause in its own timeframe.
Network Ferret wants to finish any outstanding requests before
pausing so as not to throw devices away due to timeouts. So the time it
takes to pause can be as long as the longest timeout defined in the
configuration file.

You will not receive any indication as to when Network Ferret has
actually paused.

Sending a pause() message while discovery is paused has no adverse
effects.

Resuming discovery
A paused Network Ferret is resumed by sending the resume()
message to the instance of AtiIPDDiscovery.

The resume method will return immediately and all of the paused
threads will immediately resume execution. Sending a resume
message() to a Network Ferret that is not paused will have no adverse
effects.

Stopping discovery
A running Network Ferret is stopped by sending the stopNow() or
stop() messages to the instance of AtiIPDDiscovery.

The stopNow() method sets a flag which all processors and agents
look for at various points in their logic. There is no attempt to do
anything orderly.

The stop() method calls pause(), stopNow() and then resume() which
attempts to shutdown in a more orderly fashion.

 Network Ferret™ – Programmer Guide v12.4 44

Stopping Network Ferret is not something you would normally do. It
usually only done when someone realizes they are discovering much
more than they thought they were.

Discovery CANNOT be stopped until it has finished starting. Stopping
it while it is starting produces chaos! Check the method
discovery.finishedStarting(). Stop() and stopNow() will do nothing if
discovery has not finished starting.

Running Concurrent Discoveries
Multiple discoveries can be run concurrently.

The only restriction is that you must define output locations in such a
way that the discoveries do not try to write to the same file. There are
two ways to accomplish this.

Use the config file parameters IPDReportUniqueNames and
IPDLogUniqueNames. Setting these to true to causes Network Ferret
to generate a subdirectory for each discovery run. The directory name
will be the Java millisecond timestamp.

Alternatively, provide different values for IPDReportRoot and
IPDLogRoot for each discovery run.

Querying Discovery For Progress
The ProgressState object is accessible via discovery.progress(). The
state is updated based on the config parameter IPDDiscoveryStatus
although the progress of pinging is updated in real time.

See the JavaDoc for specific methods and public fields. It would have
been optimal if the calling program could update the progress when it
wanted but because of how Network Ferret manages certain variables,
only the internal Network Ferret threads have the ability to force a
progress update.

Progress is based on things to do rather than time since it is unknown
how long any device will take to discover. A device could take 5
seconds or 5 minutes or 5 hours.

The progress is broken up into four sections. Ping, basic discovery,
extensions and wire model extensions.

For basic discovery the percentage complete is based on the number
of hosts passed from ping (minus timeouts along the way and minus
addresses belonging to multi-IP nodes such s routers) along with the

 Network Ferret™ – Programmer Guide v12.4 45

total number of processors (interface, bridge port, entity MIB, etc.).
Again, this is based on the hosts to be processed by each processor
and not based on any time measurement.

For the extensions, each extension is measured similarly to basic
discovery. Note that L2 and L3 need to wait on Connectivity Discovery
to complete so they will read 0% until then. Connectivity Discovery
tends to always read 100% because it processes hosts as they arrive
from Basic Discovery and does so fairly quickly.The extensions can’t
predict how many hosts they will have to process based on what Ping
has found. They can only decide when Basic Discovery is done with a
host whether or not they need to process it.

This is still a work in progress.

Providing Security Information
See the Credentials chapter. Credentials are part of the core
infrastructure and not specific to Network Ferret.

Debugging while using Network Ferret
This section is only important if you are running Network Ferret from
within your own Java application.

Minimally, Network Ferret creates 20-30 threads while running. If you
are doing synchronous discoveries such as Port, NetConf or VMWare,
hundreds of threads can be created. Every thread in Network Ferret is
given a name which generally matches the tags found in the log file.
You should be aware of this when debugging your own applications.

 Network Ferret™ – Programmer Guide v12.4 46

11: Extending Basic
Discovery

There are two ways to extend basic discovery. You can use an
SNMPStateMachine or an SNMPTableWalker. An example of each is
in com.logikos.discovery.examples. SNMPBasicExtension and
SNMPBasicExtensionStateMachine.

Both can be made into vendor-specific logic. See the class comments.

For purposes of minimizing the changes to existing code, any state
machine class that Network Ferret will run MUST have its class name
end with StateMachine.

Note that only a single instance of your StateMachine class is created.
You CANNOT store host-specific information in your class. This is
different from vendor-specific code where each host gets a new
instance of the vendor class. Please read the class comment in the
StateMachine example.

 Network Ferret™ – Programmer Guide v12.4 47

12: The Wire Model
Version 11.0 introduces the concept of a Wire Model. The purpose of
the wire model is to provide a common model for advanced discoveries
where connections between Nodes can be made.

In previous versions, each advanced discovery had its own data
structures. Sometimes discovery information was replicated in the
various discoveries. Sometimes a given discovery was lacking
information that another had.

Design Considerations
One goal was to minimize the disruption/change to existing NF code.
This was the purpose of the WMAugmentation classes.

Each advanced discovery had a representation of a Node and an
Interface/Port. Some of the information in these objects was copied
from basic discovery. The same data is now contained in
WMNode/Interface/Port. Some information in these objects was

 Network Ferret™ – Programmer Guide v12.4 48

specific to the particular advanced discovery such as MPLS data for
L3.

By removing the common data/code from these classes and then
allowing them to be associated with their wire model counterpart, we
were able to retain much of the coding logic in the advanced
discoveries with respect to protocol specific processing but
remove/consolidate/cleanup the processing that was similar across the
discoveries.

The other advantage of the WMAugmentation classes is that one
developer can work on L2 code and another on L3 without interfering
with each other. If we had combined all of the fields into one giant
WMNode or WMInterface object, team coding would be more
problematic.

Attaching AtiManagedObjects to Connection end points also minimized
the changes to protocol specific logic and to the creation of the factory
shipments. For logical connections such as BGP, OSPF, etc. the data
was always maintained in subclasses of AtiManagedObject. These
objects were then simply added to the shipments – such as BGPPeer
or OSPFNeighbor. The shipment remains the same but the technique
of creating the shipment from these objects is now common across the
various advanced discoveries.

Combining Discoveries
One design goal was the ability to “knit together” two or more
discoveries.

Serialization
The wire model is serializable and is written to the report directory at
the end of discovery. To minimize the possibility of disaster (serializing
everything from Basic Discovery), a new type of AtiManagedObject
was created. AtiIPDSerializableManagedObject. This class is
subclassed off of AtiMangedObject. Only classes that need to be
serialized were moved to this tree. Classes such as AtiBGPPeer and
AtiISISAdjacency.

If something in the WireModel or something in the advanced discovery
classes is holding on to any other ManagedObject types, they will not
get serialized.

Another possibility would be allow AtiManagedObject to implement
Serializable, override the serialization methods to ask the MO if it is
allowed to be serialized and either allow the default serialization

 Network Ferret™ – Programmer Guide v12.4 49

behavior to occur or end the method. The downside of this is that every
MO subclass would have to be edited to include the UUID field so the
compiler does not complain.

Size of the Wire Model
In early testing we have found that the wire model can be quite large
and slow to serialize. We experienced 1 hour with one large network.
A single device had 24,000 interfaces.

We have made as many fields as possible transient. We also have
implemented logic where the wire model purges interfaces without any
interesting information before the serialization occurs.

Knitting
There is a subclass of WireModel called WireModelGroup. It is a
collection of WireModels. It overrides certain methods in WireModel to
make the group appear as a single WireModel to all callers.

Advanced discovery connection logic looks for an existing connection.
If none is found, as would happen when running a regular discovery, a
connection is created. That connection can either be known (we found
the other end) or unknown (we did NOT find the other end).

If an existing unknown connection is found, as would happen when
knitting together multiple discoveries, and we find the other end, the
unknown connection (and possibly one on the other end) is replaced
with a known connection.

Connection IDs for knitted connections start at 1,000,000 so it is easy
to tell if a connection was from a single discovery or created when
discoveries were combined.

Performing a Knit
The code below shows how to perform a knitting operation. Where
you stored/retrieved your wire models is up to you.

import com.logikos.topology.wireModel.*;

 WireModelGroup group = new WireModelGroup();
 group.setName("knitting test");
 group.addWireModel(wm1);
 group.addWireModel(wm2);

 AtiIPDDiscovery d;

 String rootDir = "c:\\amt";

 Network Ferret™ – Programmer Guide v12.4 50

 String configDir = "config";
 String configFile = "home.cfg";

 d = new AtiIPDDiscovery();
 d.setWireModel(group);

 d.execute(rootDir, configDir, configFile);

 System.out.println("DONE KNITTING TEST");

Discovery will see that the wire model has been set and perform the
knitting operation rather than running discovery. It was necessary to
perform the operation in the context of running discovery in order to
use the confg/reporting/logging infrastructure. Advanced discovery
results will be reported as via the API and in the files, The same as
with a regular discovery.

Use WM_ReportKnittedConnectionsOnly - true in the config file to only
see the new connections that were made.

What Is and Is Not Analyzed on a Knit
Certain advanced discovery analysis cannot be performed during a
knitting operation. For example, L3 will not query routing tables and L2
will not query the bridge forwarding tables. No new querying is done.

For L2, it was decided that keeping the data from the bridge forwarding
tables in the wire model was too much. So this analysis is only done
during a running discovery.

In general, specific protocol data such as LLDP or CDP will be
analyzed in a knit. “Guessing” types of operations such as analyzing
bridge forwarding table, will not.

Accessing The Wire Model
If anyone would like to programmatically access the Wire Model, let us
know and we will put together some examples. In theory

 Network Ferret™ – Programmer Guide v12.4 51

13: Creating An Advanced
Discovery

An advanced discovery extension is different from a basic discovery
extension in several ways.

An advanced extension will subclass off a different class although an
advanced extension will generally create its own chain of processors to
do the actual work.

An advanced extension is complex and will not be documented here
until there is a client who has a real need to write their own.

 Network Ferret™ – Programmer Guide v12.4 52

Advanced Discovery Overview
Basic Discovery

DefaultProcessor
Thread

FactoryShipments
to API via callback

AtiIPDHost object
passed to each

advanced extension via
acceptHost() callback

Callback quickly
extracts any necessary
information and returns.

Each extension
has its own input
queue populated
by acceptHost()

Your
queue

L3
queue

L2
queue

Processor 1

Your
Processor 1

queue

Processor 2

Your
Processor 2

queue

Your Extension
Thread

Your extension thread populates Processor 1 queue
via the processQueueObject() callback.

Your extension object manages the flow of objects
through the chain of processors via the finishedHost()

method.

Your extension thread monitors the progress of your
extension processors, does final data analysis and

generates any FactoryShipments via the
monitorProgress() callback.

 Network Ferret™ – Programmer Guide v12.4 53

14: Localization
Network Ferret progress and most error messages have been set up
so they can be localized. Network Ferret ships with a default set of
messages in English.

All debug messages will be generated in English. Non-localized error
messages will begin with INT: . Localized progress and error
messages will be passed out via the API. Network Ferret logs will
always be written in English.

Setting the Locale
See the MsgAgent example in com.logikos.core.examples.message.
This example shows how to create messages for your own agent but it
also shows how to translate NMSCore messages. The same
technique would be used for Network Ferret.

NMSCore has messages and NetworkFerret has messages. Both
would need to have translations created.

	Programmer Guide
	v12.4
	Contents
	Preface

	Network Ferret License Agreement
	About This Guide
	Who is This Guide For?

	Getting Additional Help
	Getting More Information
	Getting Support

	1: Getting Started - Concepts
	System
	Agent
	Master Agent vs. Subagent

	Agent State
	Config
	Host
	Processor
	State Machines
	Vendor Architecture
	Logging
	File Handling
	Network Scanner

	2: Basic Coding Examples
	System
	Agent
	Subclass Agent

	Agent State
	Subclass Agent State

	Config File Parameters
	Hosts
	Processors
	Basic Processor
	Synchronous Processor
	SNMPTableProcessor

	3: Types of Systems
	Multi-agent system
	Things To Be Aware Of

	Single-agent system
	“Lazy” multi-agent system
	Vendor Specifications

	4: Pinging
	PingAgent
	Starting The PingAgent & Config Parameters
	Synchronous Ping
	Asynchronous Ping
	Stopping The PingAgent

	5: Credentials
	Providing/Receiving Security Information
	Possible Security Information
	Credential Interface
	Default Credential Interface
	SNMP Credential Logic

	6: Logging/Debugging
	Logging
	Debugging
	Agent/Processor Debug
	SNMP Debug
	Java Memory Dumps

	7: Protocols
	SNMP and Buffers
	High Volume
	GETBULK

	NetConf/REST

	8: Utilities
	CacheMember
	Converter
	DNSLookup
	File
	IFFilter
	IPAddress
	Queue
	Reflection

	9: Getting Started With Network Ferret
	Before Writing Any Code
	Network Ferret Architecture
	Wire Model
	Customization Options
	Customizing basic discovery
	Customizing advanced discovery
	Customizing vendor-specific information

	10: Embedding the Discovery Engine
	Environmental issues
	Platforms and JREs
	Java Native Image
	Third Party Jars
	Working with the configuration files

	Running discovery programmatically
	Running from within a Java program
	Set up the CLASSPATH

	Running as a standalone process

	Handling discovery output
	Registering with Network Ferret
	Receiving progress and debug messages
	Receiving error messages
	Address parameters in messages
	Receiving domain information
	Error handling

	Controlling a running discovery
	Pausing discovery
	Resuming discovery
	Stopping discovery

	Running Concurrent Discoveries
	Querying Discovery For Progress
	Providing Security Information
	Debugging while using Network Ferret

	11: Extending Basic Discovery
	12: The Wire Model
	Design Considerations
	Combining Discoveries
	Serialization
	Size of the Wire Model
	Knitting
	Performing a Knit
	What Is and Is Not Analyzed on a Knit
	Accessing The Wire Model

	13: Creating An Advanced Discovery
	Advanced Discovery Overview

	14: Localization
	Setting the Locale

